Abstract

An entirely new type of single-mode all-fiber polarizer is reported. The polarizer is based on a narrow circularly fused null taper coupler, which was twisted through 45° after being made. The polarizing effect is due to the excitation of hybrid second modes in the coupler waist. An extinction ratio of 15 dB and an insertion loss of 0.2 dB have been obtained, with scope for further improvement.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. A. Birks, S. G. Farwell, P. St. J. Russell, C. N. Pannell, Opt. Lett. 19, 1964 (1994).
    [Crossref] [PubMed]
  2. D. B. Mortimore, Electron. Lett. 21, 742 (1985).
    [Crossref]
  3. W. K. Burns, A. F. Milton, IEEE J. Quantum Electron. QE-11, 32 (1975).
    [Crossref]
  4. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), pp. 633–634.
  5. Ref. 4, pp. 288, 319, 385, 634–636. Note that Fig. 18-3(a) is incorrect.

1994 (1)

1985 (1)

D. B. Mortimore, Electron. Lett. 21, 742 (1985).
[Crossref]

1975 (1)

W. K. Burns, A. F. Milton, IEEE J. Quantum Electron. QE-11, 32 (1975).
[Crossref]

Birks, T. A.

Burns, W. K.

W. K. Burns, A. F. Milton, IEEE J. Quantum Electron. QE-11, 32 (1975).
[Crossref]

Farwell, S. G.

Love, J. D.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), pp. 633–634.

Milton, A. F.

W. K. Burns, A. F. Milton, IEEE J. Quantum Electron. QE-11, 32 (1975).
[Crossref]

Mortimore, D. B.

D. B. Mortimore, Electron. Lett. 21, 742 (1985).
[Crossref]

Pannell, C. N.

Russell, P. St. J.

Snyder, A. W.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), pp. 633–634.

Electron. Lett. (1)

D. B. Mortimore, Electron. Lett. 21, 742 (1985).
[Crossref]

IEEE J. Quantum Electron. (1)

W. K. Burns, A. F. Milton, IEEE J. Quantum Electron. QE-11, 32 (1975).
[Crossref]

Opt. Lett. (1)

Other (2)

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), pp. 633–634.

Ref. 4, pp. 288, 319, 385, 634–636. Note that Fig. 18-3(a) is incorrect.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Evolution of light through a null coupler when launched (a) into the larger fiber and (b) into the smaller fiber.

Fig. 2
Fig. 2

Propagation constants β of the six lowest-order modes along a null taper coupler as functions of the local taper ratio. Also shown are the modal electric-field distributions where the fibers are separate at one end of the coupler (left-hand side; each picture represents two polarization states), within the coupler where the cladding–air waveguide is not circularly symmetric (middle), and at the waist of a narrow coupler where the waveguide is circularly symmetric (right-hand side). This figure is highly schematic; in particular, the field patterns are not to scale, and the β variations are illustrative only.

Fig. 3
Fig. 3

Optical output power in the pretapered fiber of a null coupler with a 2-μm waist as a function of twist angle for input light polarized to give maximum loss (filled circles) and for light in the orthogonal state of polarization (open circles).

Fig. 4
Fig. 4

Optical output power in the pretapered fiber of a null coupler with a 10-μm waist as a function of twist angle. Only the local maxima (circles) and minima (squares) of the oscillatory response are shown. This response is polarization independent.

Metrics