Abstract

The joint effect of non-Kolmogorov stratospheric and Kolmogorov tropospheric turbulence on star image motion is studied, and the theoretical predictions are compared with measured data. It is shown that for a large telescope the stratospheric effect has been dramatically underestimated. The techniques that permitted us to single out the contribution of the stratosphere to star image motion and to exclude the effect of uncontrolled telescope motion on the measured data are described.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. I. Tatarskii, Wave Propagation in a Turbulent Medium (McGraw-Hill, New York, 1961).
  2. A. S. Monin, A. M. Yaglom, Statistical Fluid Mechanics (MIT Press, Cambridge, Mass., 1975), Vol. 2.
  3. A. S. Gurvich, M. S. Belen’kii, “Influence of the stratospheric turbulence on infrared imaging,” submitted toJ. Opt. Soc. Am. A.
  4. M. A. Kallistratova, Radiophys. Quantum Electron. 1, 33 (1966).
  5. M. J. Rosch, C. R. Acad. Sci. Paris 246, 559 (1958).
  6. V. P. Lukin, Proc. Soc. Photo-Opt. Instrum. Eng. 2222, 527 (1994).

1994 (1)

V. P. Lukin, Proc. Soc. Photo-Opt. Instrum. Eng. 2222, 527 (1994).

1966 (1)

M. A. Kallistratova, Radiophys. Quantum Electron. 1, 33 (1966).

1958 (1)

M. J. Rosch, C. R. Acad. Sci. Paris 246, 559 (1958).

Belen’kii, M. S.

A. S. Gurvich, M. S. Belen’kii, “Influence of the stratospheric turbulence on infrared imaging,” submitted toJ. Opt. Soc. Am. A.

Gurvich, A. S.

A. S. Gurvich, M. S. Belen’kii, “Influence of the stratospheric turbulence on infrared imaging,” submitted toJ. Opt. Soc. Am. A.

Kallistratova, M. A.

M. A. Kallistratova, Radiophys. Quantum Electron. 1, 33 (1966).

Lukin, V. P.

V. P. Lukin, Proc. Soc. Photo-Opt. Instrum. Eng. 2222, 527 (1994).

Monin, A. S.

A. S. Monin, A. M. Yaglom, Statistical Fluid Mechanics (MIT Press, Cambridge, Mass., 1975), Vol. 2.

Rosch, M. J.

M. J. Rosch, C. R. Acad. Sci. Paris 246, 559 (1958).

Tatarskii, V. I.

V. I. Tatarskii, Wave Propagation in a Turbulent Medium (McGraw-Hill, New York, 1961).

Yaglom, A. M.

A. S. Monin, A. M. Yaglom, Statistical Fluid Mechanics (MIT Press, Cambridge, Mass., 1975), Vol. 2.

C. R. Acad. Sci. Paris (1)

M. J. Rosch, C. R. Acad. Sci. Paris 246, 559 (1958).

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

V. P. Lukin, Proc. Soc. Photo-Opt. Instrum. Eng. 2222, 527 (1994).

Radiophys. Quantum Electron. (1)

M. A. Kallistratova, Radiophys. Quantum Electron. 1, 33 (1966).

Other (3)

V. I. Tatarskii, Wave Propagation in a Turbulent Medium (McGraw-Hill, New York, 1961).

A. S. Monin, A. M. Yaglom, Statistical Fluid Mechanics (MIT Press, Cambridge, Mass., 1975), Vol. 2.

A. S. Gurvich, M. S. Belen’kii, “Influence of the stratospheric turbulence on infrared imaging,” submitted toJ. Opt. Soc. Am. A.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Comparison of the measured values of the rms angle of arrival σαexp with the calculated values for the tropospheric component σαmet, as obtained by Kallistratova. 4 Curve 1 represents a theoretical prediction based on Eq. (4), which takes into account the joint effect of the stratospheric and tropospheric turbulence; curve 2 represents a prediction of the conventional theory,1,2 which takes into account solely the Kolmogorov model; and curve 3 shows a one-axis stratospheric component of the image jitter rms. The crosses show the average values of σαexp taken in five groups.

Fig. 2
Fig. 2

Dependence of rms star image jitter on the telescope diameter, as obtained by Rosch.5 Curve 1 shows a one-axis stratospheric component of a star image jitter rms calculated from Eq. (6) for Sn02 = 4.5 × 10−19 m−2, H0 = 6 km, and κos−1 = 100 m. The triangles show measured data.

Tables (1)

Tables Icon

Table 1 Ratio of the Stratospheric Component of rms Star Image Jitter to the Total rms σρs/σρ for Different D Values

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Φ n ( κ ) = 0.033 C n 2 κ - 11 / 3 ,
Φ n ( κ ) = Φ n ( 1 ) ( κ ) + Φ n ( 2 ) ( κ ) ,
Φ n ( 2 ) ( κ ) = S n 2 κ - 5 [ κ 2 / ( κ o s 2 + κ 2 ) ] 5 / 2 ,
σ ρ 2 = σ ρ t 2 + σ ρ s 2 .
σ ρ t 2 = 2 × 2.87 × 0 C n 2 ( z ) d z × D - 1 / 3 ,
σ ρ s 2 = 4 / 3 π 2 S n 0 2 H 0 κ o s - 1 .

Metrics