Abstract

We made a high-efficiency reflection grating by coating a nine-layer quarter-wave system of ZnS/Na3AlF6 directly onto a surface-relief grating in photoresist. Efficiencies of 70% and 84% were measured at the first-order Littrow mount with the laser beam incident from the air side and from the substrate side, respectively. The experimental results are in qualitative agreement with theoretical predictions. The key to further improvement in the diffraction efficiency is to improve the contour conformation of the coated dielectric layers.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. Hutley, J. F. Verrill, R. C. McPhedran, Opt. Commun. 11, 201 (1974).
    [CrossRef]
  2. D. Maystre, J. P. Laude, P. Gacoin, D. Lepere, J. P. Priou, Appl. Opt. 19, 3099 (1980).
    [CrossRef] [PubMed]
  3. L. B. Mashev, E. Popov, Opt. Commun. 15, 131 (1984).
    [CrossRef]
  4. L. B. Mashev, E. G. Loewen, Appl. Opt. 27, 31 (1988).
    [CrossRef] [PubMed]
  5. J. M. Elson, L. F. DeSandre, J. L. Stanford, J. Opt. Soc. Am. A 5, 74 (1988).
    [CrossRef]
  6. L. F. DeSandre, J. M. Elson, J. Opt. Soc. Am. A 8, 763 (1991).
    [CrossRef]
  7. D. Maystre, Opt. Commun. 26, 127 (1978).
    [CrossRef]
  8. D. Maystre, J. Opt. Soc. Am. 68, 490 (1978).
    [CrossRef]
  9. J. Chandezon, M. T. Dupuis, G. Cornet, D. Maystre, J. Opt. Soc. Am. 72, 839 (1982).
    [CrossRef]
  10. L. Li, J. Opt. Soc. Am. A 11, 2816 (1994).
    [CrossRef]
  11. D. Maystre, in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1984), Vol. 21, Chap.1.
    [CrossRef]
  12. M. Nevière, J. Opt. Soc. Am. A 11, 1835 (1994).
    [CrossRef]

1994 (2)

1991 (1)

1988 (2)

1984 (1)

L. B. Mashev, E. Popov, Opt. Commun. 15, 131 (1984).
[CrossRef]

1982 (1)

1980 (1)

1978 (2)

1974 (1)

M. C. Hutley, J. F. Verrill, R. C. McPhedran, Opt. Commun. 11, 201 (1974).
[CrossRef]

Chandezon, J.

Cornet, G.

DeSandre, L. F.

Dupuis, M. T.

Elson, J. M.

Gacoin, P.

Hutley, M. C.

M. C. Hutley, J. F. Verrill, R. C. McPhedran, Opt. Commun. 11, 201 (1974).
[CrossRef]

Laude, J. P.

Lepere, D.

Li, L.

Loewen, E. G.

Mashev, L. B.

Maystre, D.

McPhedran, R. C.

M. C. Hutley, J. F. Verrill, R. C. McPhedran, Opt. Commun. 11, 201 (1974).
[CrossRef]

Nevière, M.

Popov, E.

L. B. Mashev, E. Popov, Opt. Commun. 15, 131 (1984).
[CrossRef]

Priou, J. P.

Stanford, J. L.

Verrill, J. F.

M. C. Hutley, J. F. Verrill, R. C. McPhedran, Opt. Commun. 11, 201 (1974).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

First-order Littrow diffraction efficiency of a grating (solid curve) and reflectivity of a mirror (at the Littrow angle of the grating, dashed curve) versus normalized layer thickness. Parameters: λ = 0.59 μm, TM polarization, sinusoidal grating, period 0.33 μm, groove depth 0.12 μm, (HL)7H system, nH = 2.37, nL = 1.35, substrate index 1.46.

Fig. 2
Fig. 2

Sinusoidal profile of a photoresist grating.

Fig. 3
Fig. 3

Diffraction efficiency versus angle of incidence. The cross and upward-pointing triangles are for incidence from the substrate side, measured 0.5 h and 1 month, respectively, after the sample was taken out of the vacuum chamber. The squares and downward-pointing triangles are for incidence from the air side, measured 3 h and 1 month, respectively, after the sample was taken out of the vacuum chamber. The solid curve is the theoretical result for incidence from the air side. Grating parameters: λ = 0.6328 μm, TM polarization, sinusoidal grating, period 0.35 μm, groove depth 0.15 μm, (HL)4H system, nH = 2.31, nL = 1.35, substrate index 1.472, residual photoresist thickness 0.35 μm, normalized layer thickness ρ = 0.325.

Fig. 4
Fig. 4

(a) Conformally coated and (b) nonconformally coated gratings.

Fig. 5
Fig. 5

Theoretical prediction of diffraction efficiency with decreasing coating conformation. The grating parameters are the same as in Fig. 3, except that hq, q > 0, is given by Eq. (5).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

h q = h 0 ( 1 - γ t q / T ) ,

Metrics