Abstract

We propose a new method for the simultaneous interrogation of conventional two-beam interferometers and Bragg grating sensors. The technique employs an unbalanced Mach–Zehnder interferometer illuminated by a single low-coherence source, which acts as a wavelength-tunable source for the grating and as a path-matched filter for the Fizeau interferometer, thus providing a high phase resolution output for each sensor. The grating sensor demonstrates a dynamic strain resolution of ~0.05μɛ/Hz at 20 Hz, while the interferometric phase resolution is better than 1mrad/Hz at 20 Hz, corresponding to an rms mirror displacement of 0.08 nm.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Meltz, W. W. Morey, W. H. Glenn, Opt. Lett. 14, 823 (1989).
    [Crossref] [PubMed]
  2. A. D. Kersey, Proc. Soc. Photo-Opt. Instrum. Eng. 2071, 30 (1993).
  3. D. A. Norton, Proc. Soc. Photo-Opt. Instrum. Eng. 1795, 371 (1992).
  4. A. D. Kersey, T. A. Berkoff, W. W. Morey, Opt. Lett. 18, 72 (1993).
    [Crossref] [PubMed]
  5. F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, Opt. Commun. 65, 319 (1988).
    [Crossref]

1993 (2)

A. D. Kersey, Proc. Soc. Photo-Opt. Instrum. Eng. 2071, 30 (1993).

A. D. Kersey, T. A. Berkoff, W. W. Morey, Opt. Lett. 18, 72 (1993).
[Crossref] [PubMed]

1992 (1)

D. A. Norton, Proc. Soc. Photo-Opt. Instrum. Eng. 1795, 371 (1992).

1989 (1)

1988 (1)

F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, Opt. Commun. 65, 319 (1988).
[Crossref]

Berkoff, T. A.

Farahi, F.

F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, Opt. Commun. 65, 319 (1988).
[Crossref]

Glenn, W. H.

Jackson, D. A.

F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, Opt. Commun. 65, 319 (1988).
[Crossref]

Jones, J. D. C.

F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, Opt. Commun. 65, 319 (1988).
[Crossref]

Kersey, A. D.

A. D. Kersey, T. A. Berkoff, W. W. Morey, Opt. Lett. 18, 72 (1993).
[Crossref] [PubMed]

A. D. Kersey, Proc. Soc. Photo-Opt. Instrum. Eng. 2071, 30 (1993).

Meltz, G.

Morey, W. W.

Newson, T. P.

F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, Opt. Commun. 65, 319 (1988).
[Crossref]

Norton, D. A.

D. A. Norton, Proc. Soc. Photo-Opt. Instrum. Eng. 1795, 371 (1992).

Opt. Commun. (1)

F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, Opt. Commun. 65, 319 (1988).
[Crossref]

Opt. Lett. (2)

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

A. D. Kersey, Proc. Soc. Photo-Opt. Instrum. Eng. 2071, 30 (1993).

D. A. Norton, Proc. Soc. Photo-Opt. Instrum. Eng. 1795, 371 (1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Interferometric/BGS system using an unbalanced Mach–Zehnder interferometer as a wavelength-tunable source for the grating and as a path-matched filter for the Fizeau interferometer. BBS, broadband source; BPF’s, bandpass filters.

Fig. 2
Fig. 2

Power spectrum from the coherence-tuned interferometers (centered at 1 kHz) with the Fizeau cavity subject to an rms displacement of 7.6 nm at 20 Hz. Vertical scale, 10 dB/division; horizontal scale, 10 Hz/division.

Fig. 3
Fig. 3

Linearity of the coherence-tuned interferometers to rms displacements of the Fizeau cavity mirrors.

Fig. 4
Fig. 4

Upper trace: Test signal producing an rms mirror displacement of 12.5 nm at 20 Hz applied to the Fizeau cavity. Lower trace: Lock-in amplifier output response of the Fizeau cavity. The output is modulated by acoustic pickup of the Mach–Zehnder interferometer. Vertical scale, arbitrary units; horizontal scale, 50 ms/division.

Fig. 5
Fig. 5

Lock-in amplifier output response of the Bragg grating sensor to a peak-to-peak strain of ~18 μɛ at 20 Hz. Vertical scale, arbitrary units; horizontal scale, 20 ms/division.

Fig. 6
Fig. 6

Power spectrum of the Bragg grating sensor subject to a peak-to-peak strain of ~18 μɛ at 20 Hz. Significant 40-Hz components are present as a result of hysteresis present in the PZT element attached to the grating. Vertical scale, 10 dB/division; horizontal scale, 10 Hz/division.

Metrics