Abstract

A system of time-division multiplexing of polarization-insensitive fiber-optic Michelson interferometric sensors that uses Faraday rotator mirror elements is demonstrated. This system is constructed with conventional low-birefringence single-mode fiber and is able to solve the polarization-fading problem by a combination of Faraday rotator mirrors with unbalanced Michelson interferometers. The system is lead-fiber insensitive and has potentials for practical field applications.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, M. J. Marrone, M. A. Davis, Electron. Lett. 27, 518 (1991).
    [CrossRef]
  2. M. Martinelli, Opt. Commun. 72, 341 (1989).
    [CrossRef]
  3. N. C. Pistoni, M. Martinelli, presented at the Seventh International Conference on Optical Fiber Sensors, Sydney, Australia, December 1990.
  4. J. L. Brooks, M. Boslehi, B. Y. Kim, H. J. Shaw, J. Lightwave Technol. LT-5, 1014 (1987).
    [CrossRef]
  5. A. D. Kersey, A. Dandridge, A. B. Tveten, Opt. Lett. 12, 775 (1987).
    [CrossRef] [PubMed]
  6. A. Dandridge, “Fiber optic sensors based on the Mach– Zehnder and Michelson interferomenters,” in Fiber Optic Sensors, E. Udd, ed. (Wiley, New York, 1991), Chap. 10, p. 271.

1991 (1)

A. D. Kersey, M. J. Marrone, M. A. Davis, Electron. Lett. 27, 518 (1991).
[CrossRef]

1989 (1)

M. Martinelli, Opt. Commun. 72, 341 (1989).
[CrossRef]

1987 (2)

J. L. Brooks, M. Boslehi, B. Y. Kim, H. J. Shaw, J. Lightwave Technol. LT-5, 1014 (1987).
[CrossRef]

A. D. Kersey, A. Dandridge, A. B. Tveten, Opt. Lett. 12, 775 (1987).
[CrossRef] [PubMed]

Boslehi, M.

J. L. Brooks, M. Boslehi, B. Y. Kim, H. J. Shaw, J. Lightwave Technol. LT-5, 1014 (1987).
[CrossRef]

Brooks, J. L.

J. L. Brooks, M. Boslehi, B. Y. Kim, H. J. Shaw, J. Lightwave Technol. LT-5, 1014 (1987).
[CrossRef]

Dandridge, A.

A. D. Kersey, A. Dandridge, A. B. Tveten, Opt. Lett. 12, 775 (1987).
[CrossRef] [PubMed]

A. Dandridge, “Fiber optic sensors based on the Mach– Zehnder and Michelson interferomenters,” in Fiber Optic Sensors, E. Udd, ed. (Wiley, New York, 1991), Chap. 10, p. 271.

Davis, M. A.

A. D. Kersey, M. J. Marrone, M. A. Davis, Electron. Lett. 27, 518 (1991).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. J. Marrone, M. A. Davis, Electron. Lett. 27, 518 (1991).
[CrossRef]

A. D. Kersey, A. Dandridge, A. B. Tveten, Opt. Lett. 12, 775 (1987).
[CrossRef] [PubMed]

Kim, B. Y.

J. L. Brooks, M. Boslehi, B. Y. Kim, H. J. Shaw, J. Lightwave Technol. LT-5, 1014 (1987).
[CrossRef]

Marrone, M. J.

A. D. Kersey, M. J. Marrone, M. A. Davis, Electron. Lett. 27, 518 (1991).
[CrossRef]

Martinelli, M.

M. Martinelli, Opt. Commun. 72, 341 (1989).
[CrossRef]

N. C. Pistoni, M. Martinelli, presented at the Seventh International Conference on Optical Fiber Sensors, Sydney, Australia, December 1990.

Pistoni, N. C.

N. C. Pistoni, M. Martinelli, presented at the Seventh International Conference on Optical Fiber Sensors, Sydney, Australia, December 1990.

Shaw, H. J.

J. L. Brooks, M. Boslehi, B. Y. Kim, H. J. Shaw, J. Lightwave Technol. LT-5, 1014 (1987).
[CrossRef]

Tveten, A. B.

Electron. Lett. (1)

A. D. Kersey, M. J. Marrone, M. A. Davis, Electron. Lett. 27, 518 (1991).
[CrossRef]

J. Lightwave Technol. (1)

J. L. Brooks, M. Boslehi, B. Y. Kim, H. J. Shaw, J. Lightwave Technol. LT-5, 1014 (1987).
[CrossRef]

Opt. Commun. (1)

M. Martinelli, Opt. Commun. 72, 341 (1989).
[CrossRef]

Opt. Lett. (1)

Other (2)

A. Dandridge, “Fiber optic sensors based on the Mach– Zehnder and Michelson interferomenters,” in Fiber Optic Sensors, E. Udd, ed. (Wiley, New York, 1991), Chap. 10, p. 271.

N. C. Pistoni, M. Martinelli, presented at the Seventh International Conference on Optical Fiber Sensors, Sydney, Australia, December 1990.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental arrangement of the TDM of a polarization-insensitive Michelson interferometer. Abbreviations are explained in text.

Fig. 2
Fig. 2

Upper trace (vertical scale 1 V/division), light pulse received at PIN1. Lower trace (vertical scale 50 mV/division), light pulse train received at PIN2; the second pulse was the interference signal of the first sensor. (Horizontal scale 400 ns/division).

Fig. 3
Fig. 3

Signal amplitude of the first sensor without the FRM. The upper trace differs from the lower trace in whether PC1 is fixed or adjusted continuously (see text). (Vertical scale 1 V/division, horizontal scale 5 s/division.)

Fig. 4
Fig. 4

Signal amplitude of the first sensor with the FRM. The upper trace, differs from the lower trace in whether PC1 is kept fixed or adjusted continuously (see text). (For both upper traces: 8.5 V offset, vertical scale 200 mV/division, horizontal scale 5 s/division).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

J 0 = [ A x exp ( i δ x ) A y exp ( i δ y ) ] .
R = α 1 / 2 [ 0 - 1 - 1 0 ] ,
E 1 = [ E X 1 E Y 1 ] = Re { α 1 1 / 2 [ 0 - 1 - 1 0 ] J 0 exp ( i w t 1 ) } = Re { - α 1 1 / 2 [ A y exp ( i δ y ) A x exp ( i δ x ) ] exp ( i w t 1 ) } ,
E 2 = [ E X 2 E Y 2 ] = Re { α 2 1 / 2 [ 0 - 1 - 1 0 ] J 0 exp [ i ( w t 2 + ϕ 1 ) ] } = Re { - α 2 1 / 2 [ A y exp ( i δ y ) A x exp ( i δ x ) ] exp [ i ( w t 2 + ϕ 1 ) ] } ,
E 3 = [ E X 3 E Y 3 ] = Re { - α C 2 1 / 2 α 1 1 / 2 [ 0 - 1 - 1 0 ] [ A y exp ( i δ y ) A x exp ( i δ x ) ] × exp ( i w t 1 ) exp [ i ( w t C 2 + ϕ c ) ] } = Re { ( α C 2 α 1 ) 1 / 2 [ A x exp ( i δ x ) A y exp ( i δ y ) ] exp [ i ( w t 1 + w t C 2 + ϕ c ) ] } ,
E 4 = [ E X 4 E Y 4 ] = Re { - α C 1 1 / 2 α 2 1 / 2 [ 0 - 1 - 1 0 ] [ A y exp ( i δ y ) A x exp ( i δ x ) ] × exp [ i ( w t 2 + ϕ 1 ) exp ( i w t C 1 ) } = Re { ( α C 1 α 2 ) 1 / 2 [ A x exp ( i δ x ) A y exp ( i δ y ) ] exp [ i ( w t 2 + w t C 1 + ϕ 1 ) ] } ,

Metrics