Abstract

A new technique to multiplex interferometric optical fiber sensors in the spatial frequency domain is reported that is especially suitable for applications in smart structures and materials. It can greatly reduce the number of fiber-optical devices in the network system and employs a high-speed noniterative phase-retrieval technique to trace the phase changes in each fiber sensor. In addition, the sensor system operation is virtually immune to the polarization fading problem without the need for polarization-maintaining fibers or any special devices. A preliminary investigation based on computer simulation has been undertaken to assess the system’s feasibility and performance.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Rogowski, Proc. Soc. Photo-Opt. Instrum. Eng. 1370, 2 (1990).
  2. A. D. Kersey, K. L. Dorsey, A. Dandridge, Electron. Lett. 24, 689 (1988).
    [CrossRef]
  3. R. Duratians, G. Anglaret, C. J. Hugues, G. W. Fehrebach, in Optical Fiber Sensors, H. J. Arditty, J. P. Dakin, R. Th. Kersten, eds., Vol. 44 of Springer Proceedings in Physics (Springer-Verlag, Berlin, 1989), pp. 504–512.
  4. J. L. Santos, F. Farahi, T. Newson, A. P. Teite, D. A. Jackson, J. Lightwave Technol. 10, 853 (1992).
    [CrossRef]
  5. J. L. Brooks, R. H. Wentworth, C. R. Youngquist, M. Tur, B. Y. Kim, H. J. Show, J. Lightwave Technol. 3, 1062 (1985).
    [CrossRef]
  6. S. Chen, A. J. Rogers, B. T. Meggitt, Opt. Lett. 16, 761 (1991).
    [CrossRef] [PubMed]

1992 (1)

J. L. Santos, F. Farahi, T. Newson, A. P. Teite, D. A. Jackson, J. Lightwave Technol. 10, 853 (1992).
[CrossRef]

1991 (1)

1990 (1)

R. S. Rogowski, Proc. Soc. Photo-Opt. Instrum. Eng. 1370, 2 (1990).

1988 (1)

A. D. Kersey, K. L. Dorsey, A. Dandridge, Electron. Lett. 24, 689 (1988).
[CrossRef]

1985 (1)

J. L. Brooks, R. H. Wentworth, C. R. Youngquist, M. Tur, B. Y. Kim, H. J. Show, J. Lightwave Technol. 3, 1062 (1985).
[CrossRef]

Anglaret, G.

R. Duratians, G. Anglaret, C. J. Hugues, G. W. Fehrebach, in Optical Fiber Sensors, H. J. Arditty, J. P. Dakin, R. Th. Kersten, eds., Vol. 44 of Springer Proceedings in Physics (Springer-Verlag, Berlin, 1989), pp. 504–512.

Brooks, J. L.

J. L. Brooks, R. H. Wentworth, C. R. Youngquist, M. Tur, B. Y. Kim, H. J. Show, J. Lightwave Technol. 3, 1062 (1985).
[CrossRef]

Chen, S.

Dandridge, A.

A. D. Kersey, K. L. Dorsey, A. Dandridge, Electron. Lett. 24, 689 (1988).
[CrossRef]

Dorsey, K. L.

A. D. Kersey, K. L. Dorsey, A. Dandridge, Electron. Lett. 24, 689 (1988).
[CrossRef]

Duratians, R.

R. Duratians, G. Anglaret, C. J. Hugues, G. W. Fehrebach, in Optical Fiber Sensors, H. J. Arditty, J. P. Dakin, R. Th. Kersten, eds., Vol. 44 of Springer Proceedings in Physics (Springer-Verlag, Berlin, 1989), pp. 504–512.

Farahi, F.

J. L. Santos, F. Farahi, T. Newson, A. P. Teite, D. A. Jackson, J. Lightwave Technol. 10, 853 (1992).
[CrossRef]

Fehrebach, G. W.

R. Duratians, G. Anglaret, C. J. Hugues, G. W. Fehrebach, in Optical Fiber Sensors, H. J. Arditty, J. P. Dakin, R. Th. Kersten, eds., Vol. 44 of Springer Proceedings in Physics (Springer-Verlag, Berlin, 1989), pp. 504–512.

Hugues, C. J.

R. Duratians, G. Anglaret, C. J. Hugues, G. W. Fehrebach, in Optical Fiber Sensors, H. J. Arditty, J. P. Dakin, R. Th. Kersten, eds., Vol. 44 of Springer Proceedings in Physics (Springer-Verlag, Berlin, 1989), pp. 504–512.

Jackson, D. A.

J. L. Santos, F. Farahi, T. Newson, A. P. Teite, D. A. Jackson, J. Lightwave Technol. 10, 853 (1992).
[CrossRef]

Kersey, A. D.

A. D. Kersey, K. L. Dorsey, A. Dandridge, Electron. Lett. 24, 689 (1988).
[CrossRef]

Kim, B. Y.

J. L. Brooks, R. H. Wentworth, C. R. Youngquist, M. Tur, B. Y. Kim, H. J. Show, J. Lightwave Technol. 3, 1062 (1985).
[CrossRef]

Meggitt, B. T.

Newson, T.

J. L. Santos, F. Farahi, T. Newson, A. P. Teite, D. A. Jackson, J. Lightwave Technol. 10, 853 (1992).
[CrossRef]

Rogers, A. J.

Rogowski, R. S.

R. S. Rogowski, Proc. Soc. Photo-Opt. Instrum. Eng. 1370, 2 (1990).

Santos, J. L.

J. L. Santos, F. Farahi, T. Newson, A. P. Teite, D. A. Jackson, J. Lightwave Technol. 10, 853 (1992).
[CrossRef]

Show, H. J.

J. L. Brooks, R. H. Wentworth, C. R. Youngquist, M. Tur, B. Y. Kim, H. J. Show, J. Lightwave Technol. 3, 1062 (1985).
[CrossRef]

Teite, A. P.

J. L. Santos, F. Farahi, T. Newson, A. P. Teite, D. A. Jackson, J. Lightwave Technol. 10, 853 (1992).
[CrossRef]

Tur, M.

J. L. Brooks, R. H. Wentworth, C. R. Youngquist, M. Tur, B. Y. Kim, H. J. Show, J. Lightwave Technol. 3, 1062 (1985).
[CrossRef]

Wentworth, R. H.

J. L. Brooks, R. H. Wentworth, C. R. Youngquist, M. Tur, B. Y. Kim, H. J. Show, J. Lightwave Technol. 3, 1062 (1985).
[CrossRef]

Youngquist, C. R.

J. L. Brooks, R. H. Wentworth, C. R. Youngquist, M. Tur, B. Y. Kim, H. J. Show, J. Lightwave Technol. 3, 1062 (1985).
[CrossRef]

Electron. Lett. (1)

A. D. Kersey, K. L. Dorsey, A. Dandridge, Electron. Lett. 24, 689 (1988).
[CrossRef]

J. Lightwave Technol. (2)

J. L. Santos, F. Farahi, T. Newson, A. P. Teite, D. A. Jackson, J. Lightwave Technol. 10, 853 (1992).
[CrossRef]

J. L. Brooks, R. H. Wentworth, C. R. Youngquist, M. Tur, B. Y. Kim, H. J. Show, J. Lightwave Technol. 3, 1062 (1985).
[CrossRef]

Opt. Lett. (1)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

R. S. Rogowski, Proc. Soc. Photo-Opt. Instrum. Eng. 1370, 2 (1990).

Other (1)

R. Duratians, G. Anglaret, C. J. Hugues, G. W. Fehrebach, in Optical Fiber Sensors, H. J. Arditty, J. P. Dakin, R. Th. Kersten, eds., Vol. 44 of Springer Proceedings in Physics (Springer-Verlag, Berlin, 1989), pp. 504–512.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the spatial-division-multiplexing optical fiber sensor system.

Fig. 2
Fig. 2

Simulated phase-retrieval process in a 4-fiber 16-pixel system for (a) preset phase values (phase at pixel 0 is set to zero as a reference), (b) preset polarization angles (polarization angle at pixel 0 is set to zero), (c) the first half of the phase spectrum resulting from performing FFT on the fringe pattern (the other half is antisymmetric to this one), (d) the first half of the intensity spectrum resulting from performing FFT on the fringe pattern (the other half is symmetric to this one).

Fig. 3
Fig. 3

Preset and retrieved phases in one fiber traced through 20 consecutive frames in a 4-fiber 16-pixel system with a noise level of 0.5.

Tables (1)

Tables Icon

Table 1 Fiber End-Face Arrangement and the Number of Elements Needed for the FFT Procedure

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

w = f λ / a ,
d = w min / 2 = f λ / ( 2 D ) ,
f = 2 D d / λ .
ϕ i j = ϕ i k + ϕ k j .

Metrics