Abstract

Synthetic near-field holograms with large apertures are suitable for three-dimensional display applications. For the computation of near-field hologram structures, algorithms that involve large Fourier transforms are time consuming. A simple method is presented that shortens the generation process.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Leseberg, Appl. Opt. 31, 223 (1992).
    [CrossRef] [PubMed]
  2. A. Jendral, R. Bräuer, O. Bryngdahl, Opt. Commun. 109, 47 (1994).
    [CrossRef]
  3. S. Wentzel, A. Jendral, R. Bräuer, O. Bryngdahl, Opt. Lett. 19, 1352 (1994).
    [CrossRef] [PubMed]
  4. J. P. Waters, Appl. Phys. Lett. 9, 405 (1966).
    [CrossRef]
  5. M. Lucente, J. Electr. Imag. 2, 28 (1993).
    [CrossRef]

1994 (2)

1993 (1)

M. Lucente, J. Electr. Imag. 2, 28 (1993).
[CrossRef]

1992 (1)

1966 (1)

J. P. Waters, Appl. Phys. Lett. 9, 405 (1966).
[CrossRef]

Bräuer, R.

Bryngdahl, O.

Jendral, A.

Leseberg, D.

Lucente, M.

M. Lucente, J. Electr. Imag. 2, 28 (1993).
[CrossRef]

Waters, J. P.

J. P. Waters, Appl. Phys. Lett. 9, 405 (1966).
[CrossRef]

Wentzel, S.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. P. Waters, Appl. Phys. Lett. 9, 405 (1966).
[CrossRef]

J. Electr. Imag. (1)

M. Lucente, J. Electr. Imag. 2, 28 (1993).
[CrossRef]

Opt. Commun. (1)

A. Jendral, R. Bräuer, O. Bryngdahl, Opt. Commun. 109, 47 (1994).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

a, Synthetic near-field hologram structure consisting of 2562 pixels. b, A Fresnel hologram structure of the same size.

Fig. 2
Fig. 2

Geometry of a reconstruction situation. Diffracted light from the elementary hologram should reach all points of the spectrum.

Fig. 3
Fig. 3

Reconstruction from a synthetic near-field hologram computed according to the concept of information localization. Images a and b correspond to different observation points.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

U h ( μ ) = j = 1 N H j ( μ ) [ U j ( μ ) comb ( μ δ s ) ] δ ( μ + 1 4 δ x , ν ) comb ( μ δ x ) .
u h ( x ) = j = 1 N h j ( x ) [ u j ( x ) comb ( x δ s ) ] × exp ( - i π x 2 δ x ) comb ( x δ x ) ,
h j ( x ) exp ( i k x 2 + z j 2 ) x 2 + z j 2 .
δ e j = λ 2 δ x z obs z j z obs - z j
δ e j λ z j 2 δ x + δ x ,

Metrics