Abstract

To investigate the potential of a proposed optical frequency standard, we have measured the lifetime of the metastable 6s′ [1/2]0 state in xenon. Magneto-optically trapped xenon atoms were prepared in the 6s′ [1/2]0 state, and the time dependence of the vacuum-ultraviolet decay signature was analyzed. The total decay rate of 75(3) s−1 is the sum of a 7.8(38)-s−1 spontaneous emission rate (1−σ uncertainties) and a much larger deexcitation rate that is due to a transition driven by room-temperature blackbody radiation.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. L. Rolston, W. D. Phillips, Proc. IEEE 79, 943 (1991).
    [CrossRef]
  2. U. Sterr, A. Bard, C. J. Sansonetti, S. L. Rolston, J. D. Gillaspy, “Determination of the xenon 6s [3/2]2 –6s′[1/2]0 clock frequency by interferometric wavelength measurements,” submitted toOpt. Lett.
    [PubMed]
  3. N. E. Small-Warren, L.-Y. C. Chiu, Phys. Rev. A 11, 1777 (1975).
    [CrossRef]
  4. Y.-K. Kim, Atomic Physics Division, National Institute of Standards and Technology, Gaithersburg, Md. 20899 (personal communication, 1993).
  5. M. Walhout, H. J. L. Megens, A. Witte, S. L. Rolston, Phys. Rev. A 48, R879 (1993).
    [CrossRef] [PubMed]
  6. H. Horiguchi, R. S. F. Chang, D. W. Setser, J. Chem. Phys. 75, 1207 (1981).
    [CrossRef]
  7. J. A. Cabrera, M. Ortiz, J. Campos, Physica C 104, 416 (1981).
    [CrossRef]
  8. K.-P. Nick, V. Helbig, Phys. Scr. 32, 111 (1985).
    [CrossRef]
  9. E. Jimenez, J. Campos, An. Fis. 74, 45 (1978).
  10. M. Walhout, U. Sterr, C. Orzel, M. Hoogerland, S. L. Rolston, Phys. Rev. Lett. 74, 506 (1995).
    [CrossRef] [PubMed]
  11. M. Walhout, A. Witte, S. L. Rolston, Phys. Rev. Lett. 72, 2843 (1994).
    [CrossRef] [PubMed]
  12. C. Clark, Electron and Optical Physics Division, National Institute of Standards and Technology, Gaithersburg, Md. 20899 (personal communication, 1993).
  13. N. F. Ramsey, in Molecular Beams, International Series of Monographs on Physics, R. J. Elliott, J. A. Krumhansl, W. Marshall, D. H. Wilkinson, eds. (Oxford U. Press, Oxford, 1985), Chap. 5, p. 124.
  14. M. A. Kasevich, E. Riis, S. Chu, R. G. DeVoe, Phys. Rev. Lett. 63, 612 (1989).
    [CrossRef] [PubMed]
  15. A. Clairon, C. Salomon, S. Guellati, W. D. Phillips, Europhys. Lett. 16, 165 (1991).
    [CrossRef]
  16. L. Hollberg, J. L. Hall, Phys. Rev. Lett. 53, 230 (1984).
    [CrossRef]
  17. J. W. Farley, W. H. Wing, Phys. Rev. A 23, (1981).
    [CrossRef]
  18. M. Aymar, M. Coulombe, At. Data Nucl. Data Tables 21, 537–566 (1978).
    [CrossRef]

1995

M. Walhout, U. Sterr, C. Orzel, M. Hoogerland, S. L. Rolston, Phys. Rev. Lett. 74, 506 (1995).
[CrossRef] [PubMed]

1994

M. Walhout, A. Witte, S. L. Rolston, Phys. Rev. Lett. 72, 2843 (1994).
[CrossRef] [PubMed]

1993

M. Walhout, H. J. L. Megens, A. Witte, S. L. Rolston, Phys. Rev. A 48, R879 (1993).
[CrossRef] [PubMed]

1991

S. L. Rolston, W. D. Phillips, Proc. IEEE 79, 943 (1991).
[CrossRef]

A. Clairon, C. Salomon, S. Guellati, W. D. Phillips, Europhys. Lett. 16, 165 (1991).
[CrossRef]

1989

M. A. Kasevich, E. Riis, S. Chu, R. G. DeVoe, Phys. Rev. Lett. 63, 612 (1989).
[CrossRef] [PubMed]

1985

K.-P. Nick, V. Helbig, Phys. Scr. 32, 111 (1985).
[CrossRef]

1984

L. Hollberg, J. L. Hall, Phys. Rev. Lett. 53, 230 (1984).
[CrossRef]

1981

J. W. Farley, W. H. Wing, Phys. Rev. A 23, (1981).
[CrossRef]

H. Horiguchi, R. S. F. Chang, D. W. Setser, J. Chem. Phys. 75, 1207 (1981).
[CrossRef]

J. A. Cabrera, M. Ortiz, J. Campos, Physica C 104, 416 (1981).
[CrossRef]

1978

E. Jimenez, J. Campos, An. Fis. 74, 45 (1978).

M. Aymar, M. Coulombe, At. Data Nucl. Data Tables 21, 537–566 (1978).
[CrossRef]

1975

N. E. Small-Warren, L.-Y. C. Chiu, Phys. Rev. A 11, 1777 (1975).
[CrossRef]

Aymar, M.

M. Aymar, M. Coulombe, At. Data Nucl. Data Tables 21, 537–566 (1978).
[CrossRef]

Bard, A.

U. Sterr, A. Bard, C. J. Sansonetti, S. L. Rolston, J. D. Gillaspy, “Determination of the xenon 6s [3/2]2 –6s′[1/2]0 clock frequency by interferometric wavelength measurements,” submitted toOpt. Lett.
[PubMed]

Cabrera, J. A.

J. A. Cabrera, M. Ortiz, J. Campos, Physica C 104, 416 (1981).
[CrossRef]

Campos, J.

J. A. Cabrera, M. Ortiz, J. Campos, Physica C 104, 416 (1981).
[CrossRef]

E. Jimenez, J. Campos, An. Fis. 74, 45 (1978).

Chang, R. S. F.

H. Horiguchi, R. S. F. Chang, D. W. Setser, J. Chem. Phys. 75, 1207 (1981).
[CrossRef]

Chiu, L.-Y. C.

N. E. Small-Warren, L.-Y. C. Chiu, Phys. Rev. A 11, 1777 (1975).
[CrossRef]

Chu, S.

M. A. Kasevich, E. Riis, S. Chu, R. G. DeVoe, Phys. Rev. Lett. 63, 612 (1989).
[CrossRef] [PubMed]

Clairon, A.

A. Clairon, C. Salomon, S. Guellati, W. D. Phillips, Europhys. Lett. 16, 165 (1991).
[CrossRef]

Clark, C.

C. Clark, Electron and Optical Physics Division, National Institute of Standards and Technology, Gaithersburg, Md. 20899 (personal communication, 1993).

Coulombe, M.

M. Aymar, M. Coulombe, At. Data Nucl. Data Tables 21, 537–566 (1978).
[CrossRef]

DeVoe, R. G.

M. A. Kasevich, E. Riis, S. Chu, R. G. DeVoe, Phys. Rev. Lett. 63, 612 (1989).
[CrossRef] [PubMed]

Farley, J. W.

J. W. Farley, W. H. Wing, Phys. Rev. A 23, (1981).
[CrossRef]

Gillaspy, J. D.

U. Sterr, A. Bard, C. J. Sansonetti, S. L. Rolston, J. D. Gillaspy, “Determination of the xenon 6s [3/2]2 –6s′[1/2]0 clock frequency by interferometric wavelength measurements,” submitted toOpt. Lett.
[PubMed]

Guellati, S.

A. Clairon, C. Salomon, S. Guellati, W. D. Phillips, Europhys. Lett. 16, 165 (1991).
[CrossRef]

Hall, J. L.

L. Hollberg, J. L. Hall, Phys. Rev. Lett. 53, 230 (1984).
[CrossRef]

Helbig, V.

K.-P. Nick, V. Helbig, Phys. Scr. 32, 111 (1985).
[CrossRef]

Hollberg, L.

L. Hollberg, J. L. Hall, Phys. Rev. Lett. 53, 230 (1984).
[CrossRef]

Hoogerland, M.

M. Walhout, U. Sterr, C. Orzel, M. Hoogerland, S. L. Rolston, Phys. Rev. Lett. 74, 506 (1995).
[CrossRef] [PubMed]

Horiguchi, H.

H. Horiguchi, R. S. F. Chang, D. W. Setser, J. Chem. Phys. 75, 1207 (1981).
[CrossRef]

Jimenez, E.

E. Jimenez, J. Campos, An. Fis. 74, 45 (1978).

Kasevich, M. A.

M. A. Kasevich, E. Riis, S. Chu, R. G. DeVoe, Phys. Rev. Lett. 63, 612 (1989).
[CrossRef] [PubMed]

Kim, Y.-K.

Y.-K. Kim, Atomic Physics Division, National Institute of Standards and Technology, Gaithersburg, Md. 20899 (personal communication, 1993).

Megens, H. J. L.

M. Walhout, H. J. L. Megens, A. Witte, S. L. Rolston, Phys. Rev. A 48, R879 (1993).
[CrossRef] [PubMed]

Nick, K.-P.

K.-P. Nick, V. Helbig, Phys. Scr. 32, 111 (1985).
[CrossRef]

Ortiz, M.

J. A. Cabrera, M. Ortiz, J. Campos, Physica C 104, 416 (1981).
[CrossRef]

Orzel, C.

M. Walhout, U. Sterr, C. Orzel, M. Hoogerland, S. L. Rolston, Phys. Rev. Lett. 74, 506 (1995).
[CrossRef] [PubMed]

Phillips, W. D.

A. Clairon, C. Salomon, S. Guellati, W. D. Phillips, Europhys. Lett. 16, 165 (1991).
[CrossRef]

S. L. Rolston, W. D. Phillips, Proc. IEEE 79, 943 (1991).
[CrossRef]

Ramsey, N. F.

N. F. Ramsey, in Molecular Beams, International Series of Monographs on Physics, R. J. Elliott, J. A. Krumhansl, W. Marshall, D. H. Wilkinson, eds. (Oxford U. Press, Oxford, 1985), Chap. 5, p. 124.

Riis, E.

M. A. Kasevich, E. Riis, S. Chu, R. G. DeVoe, Phys. Rev. Lett. 63, 612 (1989).
[CrossRef] [PubMed]

Rolston, S. L.

M. Walhout, U. Sterr, C. Orzel, M. Hoogerland, S. L. Rolston, Phys. Rev. Lett. 74, 506 (1995).
[CrossRef] [PubMed]

M. Walhout, A. Witte, S. L. Rolston, Phys. Rev. Lett. 72, 2843 (1994).
[CrossRef] [PubMed]

M. Walhout, H. J. L. Megens, A. Witte, S. L. Rolston, Phys. Rev. A 48, R879 (1993).
[CrossRef] [PubMed]

S. L. Rolston, W. D. Phillips, Proc. IEEE 79, 943 (1991).
[CrossRef]

U. Sterr, A. Bard, C. J. Sansonetti, S. L. Rolston, J. D. Gillaspy, “Determination of the xenon 6s [3/2]2 –6s′[1/2]0 clock frequency by interferometric wavelength measurements,” submitted toOpt. Lett.
[PubMed]

Salomon, C.

A. Clairon, C. Salomon, S. Guellati, W. D. Phillips, Europhys. Lett. 16, 165 (1991).
[CrossRef]

Sansonetti, C. J.

U. Sterr, A. Bard, C. J. Sansonetti, S. L. Rolston, J. D. Gillaspy, “Determination of the xenon 6s [3/2]2 –6s′[1/2]0 clock frequency by interferometric wavelength measurements,” submitted toOpt. Lett.
[PubMed]

Setser, D. W.

H. Horiguchi, R. S. F. Chang, D. W. Setser, J. Chem. Phys. 75, 1207 (1981).
[CrossRef]

Small-Warren, N. E.

N. E. Small-Warren, L.-Y. C. Chiu, Phys. Rev. A 11, 1777 (1975).
[CrossRef]

Sterr, U.

M. Walhout, U. Sterr, C. Orzel, M. Hoogerland, S. L. Rolston, Phys. Rev. Lett. 74, 506 (1995).
[CrossRef] [PubMed]

U. Sterr, A. Bard, C. J. Sansonetti, S. L. Rolston, J. D. Gillaspy, “Determination of the xenon 6s [3/2]2 –6s′[1/2]0 clock frequency by interferometric wavelength measurements,” submitted toOpt. Lett.
[PubMed]

Walhout, M.

M. Walhout, U. Sterr, C. Orzel, M. Hoogerland, S. L. Rolston, Phys. Rev. Lett. 74, 506 (1995).
[CrossRef] [PubMed]

M. Walhout, A. Witte, S. L. Rolston, Phys. Rev. Lett. 72, 2843 (1994).
[CrossRef] [PubMed]

M. Walhout, H. J. L. Megens, A. Witte, S. L. Rolston, Phys. Rev. A 48, R879 (1993).
[CrossRef] [PubMed]

Wing, W. H.

J. W. Farley, W. H. Wing, Phys. Rev. A 23, (1981).
[CrossRef]

Witte, A.

M. Walhout, A. Witte, S. L. Rolston, Phys. Rev. Lett. 72, 2843 (1994).
[CrossRef] [PubMed]

M. Walhout, H. J. L. Megens, A. Witte, S. L. Rolston, Phys. Rev. A 48, R879 (1993).
[CrossRef] [PubMed]

An. Fis.

E. Jimenez, J. Campos, An. Fis. 74, 45 (1978).

At. Data Nucl. Data Tables

M. Aymar, M. Coulombe, At. Data Nucl. Data Tables 21, 537–566 (1978).
[CrossRef]

Europhys. Lett.

A. Clairon, C. Salomon, S. Guellati, W. D. Phillips, Europhys. Lett. 16, 165 (1991).
[CrossRef]

J. Chem. Phys.

H. Horiguchi, R. S. F. Chang, D. W. Setser, J. Chem. Phys. 75, 1207 (1981).
[CrossRef]

Phys. Rev. A

M. Walhout, H. J. L. Megens, A. Witte, S. L. Rolston, Phys. Rev. A 48, R879 (1993).
[CrossRef] [PubMed]

N. E. Small-Warren, L.-Y. C. Chiu, Phys. Rev. A 11, 1777 (1975).
[CrossRef]

J. W. Farley, W. H. Wing, Phys. Rev. A 23, (1981).
[CrossRef]

Phys. Rev. Lett.

M. A. Kasevich, E. Riis, S. Chu, R. G. DeVoe, Phys. Rev. Lett. 63, 612 (1989).
[CrossRef] [PubMed]

L. Hollberg, J. L. Hall, Phys. Rev. Lett. 53, 230 (1984).
[CrossRef]

M. Walhout, U. Sterr, C. Orzel, M. Hoogerland, S. L. Rolston, Phys. Rev. Lett. 74, 506 (1995).
[CrossRef] [PubMed]

M. Walhout, A. Witte, S. L. Rolston, Phys. Rev. Lett. 72, 2843 (1994).
[CrossRef] [PubMed]

Phys. Scr.

K.-P. Nick, V. Helbig, Phys. Scr. 32, 111 (1985).
[CrossRef]

Physica C

J. A. Cabrera, M. Ortiz, J. Campos, Physica C 104, 416 (1981).
[CrossRef]

Proc. IEEE

S. L. Rolston, W. D. Phillips, Proc. IEEE 79, 943 (1991).
[CrossRef]

Other

U. Sterr, A. Bard, C. J. Sansonetti, S. L. Rolston, J. D. Gillaspy, “Determination of the xenon 6s [3/2]2 –6s′[1/2]0 clock frequency by interferometric wavelength measurements,” submitted toOpt. Lett.
[PubMed]

Y.-K. Kim, Atomic Physics Division, National Institute of Standards and Technology, Gaithersburg, Md. 20899 (personal communication, 1993).

C. Clark, Electron and Optical Physics Division, National Institute of Standards and Technology, Gaithersburg, Md. 20899 (personal communication, 1993).

N. F. Ramsey, in Molecular Beams, International Series of Monographs on Physics, R. J. Elliott, J. A. Krumhansl, W. Marshall, D. H. Wilkinson, eds. (Oxford U. Press, Oxford, 1985), Chap. 5, p. 124.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Partial energy-level diagram for xenon (not to scale). The cooling and clock transitions are shown, as are the 450-nm laser excitation and spontaneous decay channels involved in the clock-state lifetime measurement. Branching ratios for the 6p′ [1/2]1 state are shown in square brackets.69 Unless otherwise indicated, all transitions are electric-dipole allowed.

Fig. 2
Fig. 2

Decay of VUV fluorescence. C(ti) represents the sum of photon counts obtained in six independent experiments. Counts are accumulated in three 5-ms time windows beginning at a delay of ti after the 450-nm excitation pulse. The solid curve has the form of Eq. (1) with Γ = 75 s−1, which is the average decay rate found from separate fits to the six data sets. The value of r0ζ0Γv for this curve is the sum of the six values produced by the fits.

Fig. 3
Fig. 3

Deexcitation of the clock state by blackbody radiation at 9.3 μm. Only a small percentage [ξ = 0.07(2); Refs. 6 and 7] of the population transferred results in VUV emission. The remainder decays to the long-lived 6s [3/2]2 state. At room temperature the blackbody-stimulated deexcitation rate of 67(5) s−1 is much larger than the spontaneous clock-state decay rate of 7.8(38) s−1.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

C ( t i ) = [ ζ 0 Γ v Γ ] { r 0 Γ [ 1 - exp ( - Γ T p ) ] } × { [ 1 - exp ( - Γ T ) ] exp ( - Γ t i ) } ,
C p = r 0 ζ 0 Γ v Γ 2 { Γ T p - [ 1 - exp ( - Γ T p ) ] } + r 1 ζ 1 T p ,
Γ 0 = Γ v - ( ξ 1 - ξ ) ( Γ - Γ v ) = 7.8 ( 38 ) s - 1 ,

Metrics