Abstract

Recording of holographic gratings in z-cut LiNbO3 waveguides with extraordinarily (TM) polarized light is demonstrated. In this geometry, photovoltaic currents perpendicular to the guiding layer and the grating vector set up space-charge fields. The mechanism has no equivalent in bulk material.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. E. Wood, P. J. Cressman, R. L. Holman, C. M. Verber, in Photorefractive Materials and Their Applications II, Vol. 61 of Topics in Applied Physics, P. Günter, J.-P. Huignard, eds. (Springer-Verlag, Berlin, 1989), pp. 45–100.
    [CrossRef]
  2. A. Donaldson, J. Phys. D 24, 785 (1991).
    [CrossRef]
  3. A. D. Novikov, S. G. Odoulov, V. M. Shandarov, E. S. Shandarov, S. M. Shandarov, J. Opt. Soc. Am. B 8, 1298 (1991).
    [CrossRef]
  4. D. Kip, E. Krätzig, Opt. Lett. 17, 1563 (1992).
    [CrossRef] [PubMed]
  5. D. L. Staebler, J. J. Amodei, J. Appl. Phys. 43, 1042 (1972).
    [CrossRef]
  6. K. Buse, J. Opt. Soc. Am. B 10, 1266 (1993).
    [CrossRef]
  7. A. M. Glass, D. von der Linde, T. J. Negran, Appl. Phys. Lett. 25, 255 (1974).
    [CrossRef]
  8. V. I. Belinicher, B. Sturman, Sov. Phys. Usp. 23, 199 (1980).
    [CrossRef]
  9. S. M. Kostritskii, O. M. Kolesnikov, J. Opt. Soc. Am. B 11, 1674 (1994).
    [CrossRef]
  10. H. G. Festl, P. Hertel, E. Krätzig, R. von Baltz, Phys. Status Solidi B 113, 157 (1982).
    [CrossRef]
  11. V. A. Gan’shin, Y. N. Korkishko, Phys. Status Solidi A 119, 11 (1990).
    [CrossRef]

1994 (1)

1993 (1)

1992 (1)

1991 (2)

1990 (1)

V. A. Gan’shin, Y. N. Korkishko, Phys. Status Solidi A 119, 11 (1990).
[CrossRef]

1982 (1)

H. G. Festl, P. Hertel, E. Krätzig, R. von Baltz, Phys. Status Solidi B 113, 157 (1982).
[CrossRef]

1980 (1)

V. I. Belinicher, B. Sturman, Sov. Phys. Usp. 23, 199 (1980).
[CrossRef]

1974 (1)

A. M. Glass, D. von der Linde, T. J. Negran, Appl. Phys. Lett. 25, 255 (1974).
[CrossRef]

1972 (1)

D. L. Staebler, J. J. Amodei, J. Appl. Phys. 43, 1042 (1972).
[CrossRef]

Amodei, J. J.

D. L. Staebler, J. J. Amodei, J. Appl. Phys. 43, 1042 (1972).
[CrossRef]

Belinicher, V. I.

V. I. Belinicher, B. Sturman, Sov. Phys. Usp. 23, 199 (1980).
[CrossRef]

Buse, K.

Cressman, P. J.

V. E. Wood, P. J. Cressman, R. L. Holman, C. M. Verber, in Photorefractive Materials and Their Applications II, Vol. 61 of Topics in Applied Physics, P. Günter, J.-P. Huignard, eds. (Springer-Verlag, Berlin, 1989), pp. 45–100.
[CrossRef]

Donaldson, A.

A. Donaldson, J. Phys. D 24, 785 (1991).
[CrossRef]

Festl, H. G.

H. G. Festl, P. Hertel, E. Krätzig, R. von Baltz, Phys. Status Solidi B 113, 157 (1982).
[CrossRef]

Gan’shin, V. A.

V. A. Gan’shin, Y. N. Korkishko, Phys. Status Solidi A 119, 11 (1990).
[CrossRef]

Glass, A. M.

A. M. Glass, D. von der Linde, T. J. Negran, Appl. Phys. Lett. 25, 255 (1974).
[CrossRef]

Hertel, P.

H. G. Festl, P. Hertel, E. Krätzig, R. von Baltz, Phys. Status Solidi B 113, 157 (1982).
[CrossRef]

Holman, R. L.

V. E. Wood, P. J. Cressman, R. L. Holman, C. M. Verber, in Photorefractive Materials and Their Applications II, Vol. 61 of Topics in Applied Physics, P. Günter, J.-P. Huignard, eds. (Springer-Verlag, Berlin, 1989), pp. 45–100.
[CrossRef]

Kip, D.

Kolesnikov, O. M.

Korkishko, Y. N.

V. A. Gan’shin, Y. N. Korkishko, Phys. Status Solidi A 119, 11 (1990).
[CrossRef]

Kostritskii, S. M.

Krätzig, E.

D. Kip, E. Krätzig, Opt. Lett. 17, 1563 (1992).
[CrossRef] [PubMed]

H. G. Festl, P. Hertel, E. Krätzig, R. von Baltz, Phys. Status Solidi B 113, 157 (1982).
[CrossRef]

Negran, T. J.

A. M. Glass, D. von der Linde, T. J. Negran, Appl. Phys. Lett. 25, 255 (1974).
[CrossRef]

Novikov, A. D.

Odoulov, S. G.

Shandarov, E. S.

Shandarov, S. M.

Shandarov, V. M.

Staebler, D. L.

D. L. Staebler, J. J. Amodei, J. Appl. Phys. 43, 1042 (1972).
[CrossRef]

Sturman, B.

V. I. Belinicher, B. Sturman, Sov. Phys. Usp. 23, 199 (1980).
[CrossRef]

Verber, C. M.

V. E. Wood, P. J. Cressman, R. L. Holman, C. M. Verber, in Photorefractive Materials and Their Applications II, Vol. 61 of Topics in Applied Physics, P. Günter, J.-P. Huignard, eds. (Springer-Verlag, Berlin, 1989), pp. 45–100.
[CrossRef]

von Baltz, R.

H. G. Festl, P. Hertel, E. Krätzig, R. von Baltz, Phys. Status Solidi B 113, 157 (1982).
[CrossRef]

von der Linde, D.

A. M. Glass, D. von der Linde, T. J. Negran, Appl. Phys. Lett. 25, 255 (1974).
[CrossRef]

Wood, V. E.

V. E. Wood, P. J. Cressman, R. L. Holman, C. M. Verber, in Photorefractive Materials and Their Applications II, Vol. 61 of Topics in Applied Physics, P. Günter, J.-P. Huignard, eds. (Springer-Verlag, Berlin, 1989), pp. 45–100.
[CrossRef]

Appl. Phys. Lett. (1)

A. M. Glass, D. von der Linde, T. J. Negran, Appl. Phys. Lett. 25, 255 (1974).
[CrossRef]

J. Appl. Phys. (1)

D. L. Staebler, J. J. Amodei, J. Appl. Phys. 43, 1042 (1972).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. D (1)

A. Donaldson, J. Phys. D 24, 785 (1991).
[CrossRef]

Opt. Lett. (1)

Phys. Status Solidi A (1)

V. A. Gan’shin, Y. N. Korkishko, Phys. Status Solidi A 119, 11 (1990).
[CrossRef]

Phys. Status Solidi B (1)

H. G. Festl, P. Hertel, E. Krätzig, R. von Baltz, Phys. Status Solidi B 113, 157 (1982).
[CrossRef]

Sov. Phys. Usp. (1)

V. I. Belinicher, B. Sturman, Sov. Phys. Usp. 23, 199 (1980).
[CrossRef]

Other (1)

V. E. Wood, P. J. Cressman, R. L. Holman, C. M. Verber, in Photorefractive Materials and Their Applications II, Vol. 61 of Topics in Applied Physics, P. Günter, J.-P. Huignard, eds. (Springer-Verlag, Berlin, 1989), pp. 45–100.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Configuration for writing holographic gratings in z-cut LiNbO3 waveguides by using extraordinarily polarized light. The propagation directions and polarizations of the interacting waves are shown by arrows.

Fig. 2
Fig. 2

Schematic representation of the photovoltaic current density j 3 ph ( y , z ) in the yz plane of a z-cut waveguide. Here Λ = 2π/|k| is the grating period and d is the effective waveguide thickness. The arrows illustrate the current density for the lowest-mode TM0.

Fig. 3
Fig. 3

Calculated distribution E 3 sc of the z component of the space-charge field for a z-cut waveguide in the yz plane. Two TM1 modes propagate under an angle θ = ±2.2° with respect to the x axis. The space-charge field is a solution of Eqs. (7) and (8) with σ 33 d = 4 × 10 - 11 AV - 1 m - 1 , σ 33 spec = 2 × 10 - 17 mV - 2, |A|2 = 105 Wm−2, and β3,33 = 10−9 V−1.

Fig. 4
Fig. 4

Time evolution of writing (0 < t < 85 s) and reading (t ≥ 85 s) of a holographic grating in a z-cut LiNbO3 waveguide (PE–z–Cu) with two TM0 modes. After 60 s a steady-state diffraction efficiency of 0.65 is reached. With an input power of 200 μW for each wave and an absorption of ~0.5 mm−1, photoconductivity exceeds dark conductivity by 1 order of magnitude. Note that for the writing process the intensity in the waveguide is twice that of the reading process, leading to a smaller time constant for the buildup of the grating.

Tables (1)

Tables Icon

Table 1 Experimental Results for Diffraction Efficiency η (Obtained with Two Either TM1 or TE1 Modes) of Holographic Gratings Written up to Saturation in Different z-Cut LiNbO3 Waveguides

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E 2 ( y , z ) = A 2 U ( z ) 2 × [ 1 + m cos ( k · y ) ] ,
j k ph = l , m β k , l m E l * E m ,
E sc = σ ^ - 1 j drift ,
E sc ( y , z ) = [ 0 , A 2 sc ( 1 ) ( z ) sin ( k · y ) , A 3 sc ( 0 ) ( z ) + A 3 sc ( 1 ) ( z ) cos ( k · y ) ] .
d d z A 3 sc ( 0 ) ( z ) = A 2 [ d U ( z ) 2 / d z ] A 2 U ( z ) 2 + σ 33 d / σ 33 spec × [ A 3 sc ( 0 ) ( z ) + β 3 , 33 σ 33 spec ] ,
d 2 d z 2 A 3 sc ( 1 ) ( z ) = k 2 A 3 sc ( 1 ) ( z ) - d d z [ m A 2 U ( z ) 2 A 2 U ( z ) 2 + σ 33 d / σ 33 spec d d z A 3 sc ( 0 ) ( z ) ] - d d z ( { A 2 [ d U ( z ) 2 / d z ] A 2 U ( z ) 2 + σ 33 d / σ 33 spec } × [ m β 3 , 33 σ 33 spec + m A 3 sc ( 0 ) ( z ) + A 3 sc ( 1 ) ( z ) ] ) .

Metrics