Abstract

We carry out a theoretical analysis of Kerr bistability in a double-coupler optical fiber loop resonator in a case of two coexisting input optical fields, and we propose a set–reset (S–R) flip-flop operation that uses two input ports. We found that in the optimum case set and reset operation can be achieved at relatively low optical input powers.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Crosignani, B. Daino, P. Di Porto, S. Wabnitz, Opt. Commun. 59, 309 (1986).
    [CrossRef]
  2. F. J. Fraile-Pelaez, J. Capmany, M. A. Muriel, Opt. Lett. 16, 907 (1991).
    [CrossRef] [PubMed]
  3. Y. H. Ja, Appl. Opt. 32, 5310 (1993).
    [CrossRef] [PubMed]
  4. L. F. Stokes, M. Chodorow, H. J. Shaw, Opt. Lett. 7, 288 (1982).
    [CrossRef] [PubMed]
  5. B. Crosignani, P. Di Porto, J. Opt. Soc. Am. 72, 1553 (1982).
    [CrossRef]
  6. F. Abdullaev, S. Darmanyan, P. Khabibullaev, Optical Solitons (Springer-Verlag, Berlin, 1993), p. 10.

1993 (1)

1991 (1)

1986 (1)

B. Crosignani, B. Daino, P. Di Porto, S. Wabnitz, Opt. Commun. 59, 309 (1986).
[CrossRef]

1982 (2)

Abdullaev, F.

F. Abdullaev, S. Darmanyan, P. Khabibullaev, Optical Solitons (Springer-Verlag, Berlin, 1993), p. 10.

Capmany, J.

Chodorow, M.

Crosignani, B.

B. Crosignani, B. Daino, P. Di Porto, S. Wabnitz, Opt. Commun. 59, 309 (1986).
[CrossRef]

B. Crosignani, P. Di Porto, J. Opt. Soc. Am. 72, 1553 (1982).
[CrossRef]

Daino, B.

B. Crosignani, B. Daino, P. Di Porto, S. Wabnitz, Opt. Commun. 59, 309 (1986).
[CrossRef]

Darmanyan, S.

F. Abdullaev, S. Darmanyan, P. Khabibullaev, Optical Solitons (Springer-Verlag, Berlin, 1993), p. 10.

Di Porto, P.

B. Crosignani, B. Daino, P. Di Porto, S. Wabnitz, Opt. Commun. 59, 309 (1986).
[CrossRef]

B. Crosignani, P. Di Porto, J. Opt. Soc. Am. 72, 1553 (1982).
[CrossRef]

Fraile-Pelaez, F. J.

Ja, Y. H.

Khabibullaev, P.

F. Abdullaev, S. Darmanyan, P. Khabibullaev, Optical Solitons (Springer-Verlag, Berlin, 1993), p. 10.

Muriel, M. A.

Shaw, H. J.

Stokes, L. F.

Wabnitz, S.

B. Crosignani, B. Daino, P. Di Porto, S. Wabnitz, Opt. Commun. 59, 309 (1986).
[CrossRef]

Appl. Opt. (1)

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

B. Crosignani, B. Daino, P. Di Porto, S. Wabnitz, Opt. Commun. 59, 309 (1986).
[CrossRef]

Opt. Lett. (2)

Other (1)

F. Abdullaev, S. Darmanyan, P. Khabibullaev, Optical Solitons (Springer-Verlag, Berlin, 1993), p. 10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the double-coupler fiber loop resonator.

Fig. 2
Fig. 2

Calculated input–output characteristics for βL = 0.465π and τ = 0.02.

Fig. 3
Fig. 3

Diagram and characteristic table of an S–R flip-flop operation.

Fig. 4
Fig. 4

Normalized switch-on and switch-off input intensities as a function of fractional coupler loss for βL = 0.465π.

Fig. 5
Fig. 5

Normalized switch-on and switch-off input intensities as a function of linear phase shift for τ = 0.02.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

E m n ( x , y , z , t ) = E ( x , y ) exp ( i β z - i ω t ) a m n ( z ) ,
- + - + E ( x , y ) 2 d x d y = 1 .
a 13 = ( 1 - τ ) 1 / 2 [ ( 1 - κ ) 1 / 2 a 11 + i κ 1 / 2 a 12 ] ,
a 14 = ( 1 - τ ) 1 / 2 [ i κ 1 / 2 a 11 + ( 1 - κ ) 1 / 2 a 12 ] ,
a 23 = ( 1 - τ ) 1 / 2 [ ( 1 - κ ) 1 / 2 a 21 + i κ 1 / 2 a 22 ] ,
a 24 = ( 1 - τ ) 1 / 2 [ i κ 1 / 2 a 21 + ( 1 - κ ) 1 / 2 a 22 ] .
a 22 = a 13 exp ( - α L + i β L + i ϕ 12 ) ,
a 12 = a 23 exp ( - α L + i β L + i ϕ 21 ) ,
ϕ 12 = R a 13 2 L ,
ϕ 21 = R a 23 2 L ,
R = ( ω / c ) n 2 - + - + E ( x , y ) 4 d x d y ,
a 13 = ( 1 - τ 1 - κ ) 1 / 2 a 11 + i ( κ 1 - κ ) 1 / 2 a 14 ,
a 23 = ( 1 - τ 1 - κ ) 1 / 2 a 21 + i ( κ 1 - κ ) 1 / 2 a 24 .
a 14 = 1 1 + κ ( 1 - τ ) exp [ - 2 α L + i ( 2 β L + ϕ 12 + ϕ 21 ) ] × ( i κ 1 / 2 ( 1 - τ ) 1 / 2 { 1 + ( 1 - τ ) × exp [ - 2 α L + i ( 2 β L + ϕ 12 + ϕ 21 ) ] } a 11 + ( 1 - κ ) ( 1 - τ ) exp [ - α L + i ( β L + ϕ 21 ) ] a 21 ) ,
a 24 = 1 1 + κ ( 1 - τ ) exp [ - 2 α L + i ( 2 β L + ϕ 12 + ϕ 21 ) ] × ( ( 1 - κ ) ( 1 - τ ) exp [ - α L + i ( β L + ϕ 12 ) ] a 11 + i κ 1 / 2 ( 1 - τ ) 1 / 2 { 1 + ( 1 - τ ) × exp [ - 2 α L + i ( 2 β L + ϕ 12 + ϕ 21 ) ] } a 21 ) .
I m n = R L a m n 2 .
P = I λ n 1 σ / ( 4 π n 2 Z 0 L ) ,

Metrics