Abstract

Photon conversion efficiencies of 60% at 2.92 μm and 25% at 4.5 μm of a high-power injection-seeded Ti:sapphire laser have been achieved by difference frequency mixing with the new crystal KTiOAsO4.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Kung, Appl. Phys. Lett. 65, 1082 (1994).
    [CrossRef]
  2. K. Kato, IEEE J. Quantum Electron. QE-16, 1017 (1980); K. Kato, IEEE J. Quantum Electron. QE-20, 698 (1984); K. Kato, IEEE J. Quantum Electron. QE-21, 119 (1985).
    [CrossRef]
  3. L. Mannik, S. K. Brown, Opt. Commun. 47, 62 (1983).
    [CrossRef]
  4. Y. X. Fan, R. C. Eckardt, R. L Byer, R. K. Route, R. S. Feigelson, Appl. Phys. Lett. 45, 313 (1984).
    [CrossRef]
  5. R. C. Eckardt, Y. X. Fan, R. L. Byer, Appl. Phys. Lett. 49, 608 (1986).
    [CrossRef]
  6. P. Rabinowitz, B. N. Perry, N. Levinos, IEEE J. Quantum Electron. QE-22, 797 (1986).
    [CrossRef]
  7. S. K. Wong, R. Oliver, K. L. Schepler, D. L. Fenimore, Opt. Lett. 19, 1433 (1994).
    [CrossRef] [PubMed]
  8. P. E. Powers, S. Ramakrishna, C. L. Tang, L. K. Cheng, Opt. Lett. 18, 1171 (1993).
    [CrossRef] [PubMed]
  9. V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, in Handbook of Nonlinear Optical Crystals, A. E. Siegman, ed., Vol. 64 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1990), p. 45; A. H. Kung, S. Fei, H. L. Strauss, “Mid-infrared genertion using dye lasers in KTiOAsO4 vs. LiIO3,” submitted toAppl. Phys. Lett.
  10. The IR pulse duration mimics that of the near-IR pulse because the 1064-nm pulse is several nanoseconds longer than the near-IR pulse.

1994

1993

1986

R. C. Eckardt, Y. X. Fan, R. L. Byer, Appl. Phys. Lett. 49, 608 (1986).
[CrossRef]

P. Rabinowitz, B. N. Perry, N. Levinos, IEEE J. Quantum Electron. QE-22, 797 (1986).
[CrossRef]

1984

Y. X. Fan, R. C. Eckardt, R. L Byer, R. K. Route, R. S. Feigelson, Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

1983

L. Mannik, S. K. Brown, Opt. Commun. 47, 62 (1983).
[CrossRef]

1980

K. Kato, IEEE J. Quantum Electron. QE-16, 1017 (1980); K. Kato, IEEE J. Quantum Electron. QE-20, 698 (1984); K. Kato, IEEE J. Quantum Electron. QE-21, 119 (1985).
[CrossRef]

Brown, S. K.

L. Mannik, S. K. Brown, Opt. Commun. 47, 62 (1983).
[CrossRef]

Byer, R. L

Y. X. Fan, R. C. Eckardt, R. L Byer, R. K. Route, R. S. Feigelson, Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

Byer, R. L.

R. C. Eckardt, Y. X. Fan, R. L. Byer, Appl. Phys. Lett. 49, 608 (1986).
[CrossRef]

Cheng, L. K.

Dmitriev, V. G.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, in Handbook of Nonlinear Optical Crystals, A. E. Siegman, ed., Vol. 64 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1990), p. 45; A. H. Kung, S. Fei, H. L. Strauss, “Mid-infrared genertion using dye lasers in KTiOAsO4 vs. LiIO3,” submitted toAppl. Phys. Lett.

Eckardt, R. C.

R. C. Eckardt, Y. X. Fan, R. L. Byer, Appl. Phys. Lett. 49, 608 (1986).
[CrossRef]

Y. X. Fan, R. C. Eckardt, R. L Byer, R. K. Route, R. S. Feigelson, Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

Fan, Y. X.

R. C. Eckardt, Y. X. Fan, R. L. Byer, Appl. Phys. Lett. 49, 608 (1986).
[CrossRef]

Y. X. Fan, R. C. Eckardt, R. L Byer, R. K. Route, R. S. Feigelson, Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

Feigelson, R. S.

Y. X. Fan, R. C. Eckardt, R. L Byer, R. K. Route, R. S. Feigelson, Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

Fenimore, D. L.

Gurzadyan, G. G.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, in Handbook of Nonlinear Optical Crystals, A. E. Siegman, ed., Vol. 64 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1990), p. 45; A. H. Kung, S. Fei, H. L. Strauss, “Mid-infrared genertion using dye lasers in KTiOAsO4 vs. LiIO3,” submitted toAppl. Phys. Lett.

Kato, K.

K. Kato, IEEE J. Quantum Electron. QE-16, 1017 (1980); K. Kato, IEEE J. Quantum Electron. QE-20, 698 (1984); K. Kato, IEEE J. Quantum Electron. QE-21, 119 (1985).
[CrossRef]

Kung, A. H.

A. H. Kung, Appl. Phys. Lett. 65, 1082 (1994).
[CrossRef]

Levinos, N.

P. Rabinowitz, B. N. Perry, N. Levinos, IEEE J. Quantum Electron. QE-22, 797 (1986).
[CrossRef]

Mannik, L.

L. Mannik, S. K. Brown, Opt. Commun. 47, 62 (1983).
[CrossRef]

Nikogosyan, D. N.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, in Handbook of Nonlinear Optical Crystals, A. E. Siegman, ed., Vol. 64 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1990), p. 45; A. H. Kung, S. Fei, H. L. Strauss, “Mid-infrared genertion using dye lasers in KTiOAsO4 vs. LiIO3,” submitted toAppl. Phys. Lett.

Oliver, R.

Perry, B. N.

P. Rabinowitz, B. N. Perry, N. Levinos, IEEE J. Quantum Electron. QE-22, 797 (1986).
[CrossRef]

Powers, P. E.

Rabinowitz, P.

P. Rabinowitz, B. N. Perry, N. Levinos, IEEE J. Quantum Electron. QE-22, 797 (1986).
[CrossRef]

Ramakrishna, S.

Route, R. K.

Y. X. Fan, R. C. Eckardt, R. L Byer, R. K. Route, R. S. Feigelson, Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

Schepler, K. L.

Tang, C. L.

Wong, S. K.

Appl. Phys. Lett.

Y. X. Fan, R. C. Eckardt, R. L Byer, R. K. Route, R. S. Feigelson, Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

R. C. Eckardt, Y. X. Fan, R. L. Byer, Appl. Phys. Lett. 49, 608 (1986).
[CrossRef]

A. H. Kung, Appl. Phys. Lett. 65, 1082 (1994).
[CrossRef]

IEEE J. Quantum Electron.

K. Kato, IEEE J. Quantum Electron. QE-16, 1017 (1980); K. Kato, IEEE J. Quantum Electron. QE-20, 698 (1984); K. Kato, IEEE J. Quantum Electron. QE-21, 119 (1985).
[CrossRef]

P. Rabinowitz, B. N. Perry, N. Levinos, IEEE J. Quantum Electron. QE-22, 797 (1986).
[CrossRef]

Opt. Commun.

L. Mannik, S. K. Brown, Opt. Commun. 47, 62 (1983).
[CrossRef]

Opt. Lett.

Other

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, in Handbook of Nonlinear Optical Crystals, A. E. Siegman, ed., Vol. 64 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1990), p. 45; A. H. Kung, S. Fei, H. L. Strauss, “Mid-infrared genertion using dye lasers in KTiOAsO4 vs. LiIO3,” submitted toAppl. Phys. Lett.

The IR pulse duration mimics that of the near-IR pulse because the 1064-nm pulse is several nanoseconds longer than the near-IR pulse.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Infrared transmission of the flux-grown KTA crystal used in this experiment. The crystal length was 8 mm. The measurement was performed with a Perkin-Elmer Fourier-transform IR spectrometer with 2.0-cm−1 resolution. The transmission has not been adjusted for reflection losses.

Fig. 2
Fig. 2

(a) Ti:sapphire laser pulse energy incident upon the KTA crystal as a function of IR wavelength. Successive points are separated by ~5 nm in the near IR. The near-IR wavelength λnIR, in micrometers, is related to the IR wavelength by (λnIR)−1 = (λnIR)−1 + 1/1.064. (b) IR output pulse energy as a function of wavelength. (c) Energy (filled squares) and photon (filled circles) conversion efficiency as a function of IR wavelength. Dips in the curve, indicated by OH and CO2, are due to absorption by atmospheric water vapor and carbon dioxide, respectively. Note that the vertical scale in (a) is not down to zero.

Fig. 3
Fig. 3

Oscilloscope traces of the Ti:sapphire laser pulse at 843 nm transmitted through the KTA crystal. The top trace was taken with the 1064-nm pulses blocked, and the bottom trace with the 1064-nm pulses overlapping the Ti:sapphire pulses. Ripples on the baseline are rf noise from the laser. Each trace represented an average of 400 pulses. Individual pulse peak-to-peak fluctuation was ~10%. The pulse envelope was not fully resolved and was limited by the scope resolution of 400 MHz.

Fig. 4
Fig. 4

Same as Fig. 3, except that the traces were taken at λnIR of 780 nm and with the use of a seeded Nd:YAG laser pulse for mixing.

Metrics