Abstract

It is shown that, for stationary signals, by use of a microwave switchable delay line the number of channels in a multichannel fiber-optic correlator may be simply expanded. By replacing one optical tree with an electrical tree and by performing the AND operation with double-gate metal-oxide semiconductor field-effect transistors, we demonstrate two methods of reducing the cost of a multichannel architecture without a reduction in speed. Using optical implementation for delays longer than 5 ns and microwave implementation for delays shorter than 5 ns, we obtain 20 points of the correlation function of a 500-MHz signal.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Jackson, J. D. C. Jones, Opt. Lett. 11, 824 (1986).
    [CrossRef] [PubMed]
  2. D. D. Sampson, D. A. Jackson, Opt. Lett. 16, 1899 (1991).
    [CrossRef] [PubMed]
  3. D. D. Sampson, W. T. Dove, D. A. Jackson, Appl. Opt. 32, 3905 (1993).
    [PubMed]
  4. D. D. Sampson, “High-bandwidth temporal correlation using optical fibre networks,” Ph.D. dissertation (University of Kent at Canterbury, Kent, UK, 1992).
  5. A. Gh. Podoleanu, R. K. Harding, D. A. Jackson, in Proceedings of the Sixth Joint European Physical Society-American Physical Society International Conference on Physics Computing, R. Gruber, M. Tomassini, eds. (European Physical Society, Geneva, 1994), p. 531.
  6. K. P. Jackson, S. A. Newton, B. Moslehi, M. C. C. Cutler, J. W. Goodman, H. J. Shaw, IEEE Trans. Microwave Theory Tech. MTT-33, 193 (1985).
    [CrossRef]

1993 (1)

1991 (1)

1986 (1)

1985 (1)

K. P. Jackson, S. A. Newton, B. Moslehi, M. C. C. Cutler, J. W. Goodman, H. J. Shaw, IEEE Trans. Microwave Theory Tech. MTT-33, 193 (1985).
[CrossRef]

Cutler, M. C. C.

K. P. Jackson, S. A. Newton, B. Moslehi, M. C. C. Cutler, J. W. Goodman, H. J. Shaw, IEEE Trans. Microwave Theory Tech. MTT-33, 193 (1985).
[CrossRef]

Dove, W. T.

Goodman, J. W.

K. P. Jackson, S. A. Newton, B. Moslehi, M. C. C. Cutler, J. W. Goodman, H. J. Shaw, IEEE Trans. Microwave Theory Tech. MTT-33, 193 (1985).
[CrossRef]

Harding, R. K.

A. Gh. Podoleanu, R. K. Harding, D. A. Jackson, in Proceedings of the Sixth Joint European Physical Society-American Physical Society International Conference on Physics Computing, R. Gruber, M. Tomassini, eds. (European Physical Society, Geneva, 1994), p. 531.

Jackson, D. A.

D. D. Sampson, W. T. Dove, D. A. Jackson, Appl. Opt. 32, 3905 (1993).
[PubMed]

D. D. Sampson, D. A. Jackson, Opt. Lett. 16, 1899 (1991).
[CrossRef] [PubMed]

D. A. Jackson, J. D. C. Jones, Opt. Lett. 11, 824 (1986).
[CrossRef] [PubMed]

A. Gh. Podoleanu, R. K. Harding, D. A. Jackson, in Proceedings of the Sixth Joint European Physical Society-American Physical Society International Conference on Physics Computing, R. Gruber, M. Tomassini, eds. (European Physical Society, Geneva, 1994), p. 531.

Jackson, K. P.

K. P. Jackson, S. A. Newton, B. Moslehi, M. C. C. Cutler, J. W. Goodman, H. J. Shaw, IEEE Trans. Microwave Theory Tech. MTT-33, 193 (1985).
[CrossRef]

Jones, J. D. C.

Moslehi, B.

K. P. Jackson, S. A. Newton, B. Moslehi, M. C. C. Cutler, J. W. Goodman, H. J. Shaw, IEEE Trans. Microwave Theory Tech. MTT-33, 193 (1985).
[CrossRef]

Newton, S. A.

K. P. Jackson, S. A. Newton, B. Moslehi, M. C. C. Cutler, J. W. Goodman, H. J. Shaw, IEEE Trans. Microwave Theory Tech. MTT-33, 193 (1985).
[CrossRef]

Podoleanu, A. Gh.

A. Gh. Podoleanu, R. K. Harding, D. A. Jackson, in Proceedings of the Sixth Joint European Physical Society-American Physical Society International Conference on Physics Computing, R. Gruber, M. Tomassini, eds. (European Physical Society, Geneva, 1994), p. 531.

Sampson, D. D.

D. D. Sampson, W. T. Dove, D. A. Jackson, Appl. Opt. 32, 3905 (1993).
[PubMed]

D. D. Sampson, D. A. Jackson, Opt. Lett. 16, 1899 (1991).
[CrossRef] [PubMed]

D. D. Sampson, “High-bandwidth temporal correlation using optical fibre networks,” Ph.D. dissertation (University of Kent at Canterbury, Kent, UK, 1992).

Shaw, H. J.

K. P. Jackson, S. A. Newton, B. Moslehi, M. C. C. Cutler, J. W. Goodman, H. J. Shaw, IEEE Trans. Microwave Theory Tech. MTT-33, 193 (1985).
[CrossRef]

Appl. Opt. (1)

IEEE Trans. Microwave Theory Tech. (1)

K. P. Jackson, S. A. Newton, B. Moslehi, M. C. C. Cutler, J. W. Goodman, H. J. Shaw, IEEE Trans. Microwave Theory Tech. MTT-33, 193 (1985).
[CrossRef]

Opt. Lett. (2)

Other (2)

D. D. Sampson, “High-bandwidth temporal correlation using optical fibre networks,” Ph.D. dissertation (University of Kent at Canterbury, Kent, UK, 1992).

A. Gh. Podoleanu, R. K. Harding, D. A. Jackson, in Proceedings of the Sixth Joint European Physical Society-American Physical Society International Conference on Physics Computing, R. Gruber, M. Tomassini, eds. (European Physical Society, Geneva, 1994), p. 531.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Multichannel fiber-optic correlator using one photodiode and dual-input and gates on each channel. DR1 and DR2, derandomizers; CLK, clock generator (1-ns period); L, laser diode; OSD, optical splitter (the output fibers are extended by ln to implement successive delays in steps of τ = 1 ns); D0–DN, high-speed photodetectors; SDL5, 1-ns five-step microwave switchable delay line; E1, E2, drivers; 1:N–D, microwave splitter; C0–CN, 1-GHz counters; CI, computer interface; PC, personal computer.

Fig. 2
Fig. 2

Output of the switchable delay-line block for a 0.35-ns FWHM pulse applied to the input. All five lines are active.

Fig. 3
Fig. 3

Plot of 4 × 5 points of the autocorrelation function for a 500-MHz signal applied to the input, with experimental data (squares) and theoretical curve.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

C x y ( n τ ) = 1 P p = 1 P x ( p τ ) y ( p τ + n τ ) ,
D n = O d + E d - E e ,

Metrics