Abstract

Greater than 1.5 μW of tunable wavelength-modulated 308-nm radiation was generated by sum-frequency mixing of 90 mW of 835-nm diode-laser output and 1.5 W of 488-nm Ar+-laser output in a beta-barium metaborate crystal. Hydroxyl radicals formed in a discharge-flow reactor were detected by use of the generated UV beam by direct absorption, wavelength-modulation absorption spectroscopy, and laser-induced fluorescence. Wavelength modulation with second-harmonic detection yielded an estimated minimum detectable absorbance of 8.5 × 10−6 at a 1-Hz bandwidth. This absorbance level corresponds to an OH detection sensitivity of 11.7 parts per trillion for a 1-m path length at 1 atm and 298 K.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Silver, Appl. Opt. 31, 707 (1992), and references therein.
    [Crossref] [PubMed]
  2. D. S. Bomse, A. C. Stanton, J. A. Silver, Appl. Opt. 31, 718 (1992), and references therein.
    [Crossref] [PubMed]
  3. D. B. Oh, A. C. Stanton, J. A. Silver, J. Phys. Chem. 97, 2246 (1993).
    [Crossref]
  4. J. A. Silver, D. C. Hovde, Rev. Sci. Instrum. 65, 1691 (1994).
    [Crossref]
  5. D. C. Hovde, T. P. Meyers, A. C. Stanton, D. R. Matt, “Methane emissions from a landfill measured by eddy correlation using a fast response diode laser sensor,” J. Atmos. Chem. (to be published).
  6. L. Goldberg, M. K. Chun, Appl. Phys. Lett. 55, 218 (1989).
    [Crossref]
  7. G. J. Dixon, C. E. Tanner, C. E. Weiman, Opt. Lett. 14, 731 (1989).
    [Crossref] [PubMed]
  8. K. Sugiyama, J. Yoda, T. Sajurai, Opt. Lett. 16, 449 (1991).
    [Crossref] [PubMed]
  9. P. Crutzen, Tellus 26, 47 (1974).
    [Crossref]
  10. G. A. Fisk, J. A. Miller, Chem. Eng. News 65(35), 22 (1987).
  11. G. D. Boyd, D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
    [Crossref]
  12. D. N. Nikogosyan, Appl. Phys. A 52, 359 (1991).
    [Crossref]
  13. A. Goldman, J. R. Gillis, J. Quant. Spectrosc. Radiat. Transfer 25, 1135 (1981).
    [Crossref]
  14. G. H. Mount, J. Geophys. Res. 97, 2427 (1992).
    [Crossref]

1994 (1)

J. A. Silver, D. C. Hovde, Rev. Sci. Instrum. 65, 1691 (1994).
[Crossref]

1993 (1)

D. B. Oh, A. C. Stanton, J. A. Silver, J. Phys. Chem. 97, 2246 (1993).
[Crossref]

1992 (3)

1991 (2)

1989 (2)

1987 (1)

G. A. Fisk, J. A. Miller, Chem. Eng. News 65(35), 22 (1987).

1981 (1)

A. Goldman, J. R. Gillis, J. Quant. Spectrosc. Radiat. Transfer 25, 1135 (1981).
[Crossref]

1974 (1)

P. Crutzen, Tellus 26, 47 (1974).
[Crossref]

1968 (1)

G. D. Boyd, D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[Crossref]

Bomse, D. S.

Boyd, G. D.

G. D. Boyd, D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[Crossref]

Chun, M. K.

L. Goldberg, M. K. Chun, Appl. Phys. Lett. 55, 218 (1989).
[Crossref]

Crutzen, P.

P. Crutzen, Tellus 26, 47 (1974).
[Crossref]

Dixon, G. J.

Fisk, G. A.

G. A. Fisk, J. A. Miller, Chem. Eng. News 65(35), 22 (1987).

Gillis, J. R.

A. Goldman, J. R. Gillis, J. Quant. Spectrosc. Radiat. Transfer 25, 1135 (1981).
[Crossref]

Goldberg, L.

L. Goldberg, M. K. Chun, Appl. Phys. Lett. 55, 218 (1989).
[Crossref]

Goldman, A.

A. Goldman, J. R. Gillis, J. Quant. Spectrosc. Radiat. Transfer 25, 1135 (1981).
[Crossref]

Hovde, D. C.

J. A. Silver, D. C. Hovde, Rev. Sci. Instrum. 65, 1691 (1994).
[Crossref]

D. C. Hovde, T. P. Meyers, A. C. Stanton, D. R. Matt, “Methane emissions from a landfill measured by eddy correlation using a fast response diode laser sensor,” J. Atmos. Chem. (to be published).

Kleinman, D. A.

G. D. Boyd, D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[Crossref]

Matt, D. R.

D. C. Hovde, T. P. Meyers, A. C. Stanton, D. R. Matt, “Methane emissions from a landfill measured by eddy correlation using a fast response diode laser sensor,” J. Atmos. Chem. (to be published).

Meyers, T. P.

D. C. Hovde, T. P. Meyers, A. C. Stanton, D. R. Matt, “Methane emissions from a landfill measured by eddy correlation using a fast response diode laser sensor,” J. Atmos. Chem. (to be published).

Miller, J. A.

G. A. Fisk, J. A. Miller, Chem. Eng. News 65(35), 22 (1987).

Mount, G. H.

G. H. Mount, J. Geophys. Res. 97, 2427 (1992).
[Crossref]

Nikogosyan, D. N.

D. N. Nikogosyan, Appl. Phys. A 52, 359 (1991).
[Crossref]

Oh, D. B.

D. B. Oh, A. C. Stanton, J. A. Silver, J. Phys. Chem. 97, 2246 (1993).
[Crossref]

Sajurai, T.

Silver, J. A.

Stanton, A. C.

D. B. Oh, A. C. Stanton, J. A. Silver, J. Phys. Chem. 97, 2246 (1993).
[Crossref]

D. S. Bomse, A. C. Stanton, J. A. Silver, Appl. Opt. 31, 718 (1992), and references therein.
[Crossref] [PubMed]

D. C. Hovde, T. P. Meyers, A. C. Stanton, D. R. Matt, “Methane emissions from a landfill measured by eddy correlation using a fast response diode laser sensor,” J. Atmos. Chem. (to be published).

Sugiyama, K.

Tanner, C. E.

Weiman, C. E.

Yoda, J.

Appl. Opt. (2)

Appl. Phys. A (1)

D. N. Nikogosyan, Appl. Phys. A 52, 359 (1991).
[Crossref]

Appl. Phys. Lett. (1)

L. Goldberg, M. K. Chun, Appl. Phys. Lett. 55, 218 (1989).
[Crossref]

Chem. Eng. News (1)

G. A. Fisk, J. A. Miller, Chem. Eng. News 65(35), 22 (1987).

J. Appl. Phys. (1)

G. D. Boyd, D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[Crossref]

J. Geophys. Res. (1)

G. H. Mount, J. Geophys. Res. 97, 2427 (1992).
[Crossref]

J. Phys. Chem. (1)

D. B. Oh, A. C. Stanton, J. A. Silver, J. Phys. Chem. 97, 2246 (1993).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

A. Goldman, J. R. Gillis, J. Quant. Spectrosc. Radiat. Transfer 25, 1135 (1981).
[Crossref]

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

J. A. Silver, D. C. Hovde, Rev. Sci. Instrum. 65, 1691 (1994).
[Crossref]

Tellus (1)

P. Crutzen, Tellus 26, 47 (1974).
[Crossref]

Other (1)

D. C. Hovde, T. P. Meyers, A. C. Stanton, D. R. Matt, “Methane emissions from a landfill measured by eddy correlation using a fast response diode laser sensor,” J. Atmos. Chem. (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental arrangement for sum-frequency mixing the 835-nm diode-laser beam with the 488-nm Ar+ beam in a β-BBO crystal.

Fig. 2
Fig. 2

Observed UV power from sum-frequency mixing as a function of Ar+ pump power (835-nm diode-laser power fixed at 90 mW).

Fig. 3
Fig. 3

Spectra of the Q1(1) and Q21(1) line pair of the (0, 0) band of the OH A 2+X2Π transition recorded with direct absorption, 2f WMS, and LIF emission detection.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P 3 = 4 ω 1 ω 2 ω 3 d eff 2 exp ( - α * l ) P 1 P 2 l h / ( π ɛ 0 c 4 n 3 2 ) ,

Metrics