Abstract

Absorption coefficients are measured at CO and CO2 laser wavelengths for the poison gas phosgene, CCl2O, and the isotopic species H216O, H218O, HD16O, D216O, 14N16O, and 15N16O. The laser lines selected are those in near coincidence with absorption lines of the gases and vapors studied. These data should prove useful in analytical applications relating to pollution monitoring and control of phosgene or D2O leaks. They also demonstrate the feasibility of determining certain important isotope abundances or ratios by simple and rapid infrared spectroscopic methods.

© 1978 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. T. Menzies, M. S. Shumate, “Optoacoustic measurements of water vapor absorption at selected CO laser wavelengths in the 5 μm region,” Appl. Opt. 15, 2025–2027 (1976).
    [CrossRef] [PubMed]
  2. B. K. Garside, E. A. Ballik, M. Elsherbiny, J. Shewchun, “Resonance absorption measurements of NO with a line-tunable CO laser: spectroscopic data for pollution monitoring,” Appl. Opt. 16, 398–402 (1977).
    [CrossRef] [PubMed]
  3. L.-G. Rosengren, “Optimal optoacoustic detector design,” Appl. Opt. 14, 1960–1976 (1975).
    [CrossRef] [PubMed]
  4. B. Lehmann, M. Whalen, R. Zumbrunn, H. Oeschger, W. Schnell, “Isotope analysis by infrared laser absorption spectroscopy,” Appl. Phys. 13, 153–158 (1977).
    [CrossRef]
  5. M. Wahlen, R. S. Eng, K. W. Nill, “Tunable diode laser spectroscopy of 14CO2: absorption coefficients and analytical applications” Appl. Opt. 16, 2350–2352 (1977).
    [CrossRef] [PubMed]
  6. H. J. Seguin, J. Tulip, B. White, “Sealed room-temperature CO-CO2 laser operating at 5 or 10 μm,” Appl. Phys. Lett. 20, 436–438 (1972).
    [CrossRef]
  7. A. Kaldor, W. B. Olson, A. G. Maki, “Pollution monitor for nitric oxide: a laser device based on the Zeeman modulation of absorption,” Science 176, 508–510 (1972).
    [CrossRef] [PubMed]
  8. E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, “Atmospheric water vapor measurements with an infrared (10 μm) differential-absorption lidar system,” Appl. Phys. Lett. 28, 542–543 (1976).
    [CrossRef]
  9. W. Schnell, G. Fischer, “Carbon dioxide laser absorption coefficients of various air pollutants,” Appl. Opt. 14, 2058–2059 (1975).
    [CrossRef] [PubMed]
  10. P. K. Cheo, M. Gilden, “Continuous tuning of 12 GHz in two bands of CO2 laser lines,” Opt. Lett. 1, 38–39 (1977).
    [CrossRef] [PubMed]
  11. See, e.g., Handbook of Chemistry and Physics,49th ed. (Chemical Rubber Co., Cleveland, Ohio, 1968–69), pp. B-6-B-7.

1977 (4)

1976 (2)

E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, “Atmospheric water vapor measurements with an infrared (10 μm) differential-absorption lidar system,” Appl. Phys. Lett. 28, 542–543 (1976).
[CrossRef]

R. T. Menzies, M. S. Shumate, “Optoacoustic measurements of water vapor absorption at selected CO laser wavelengths in the 5 μm region,” Appl. Opt. 15, 2025–2027 (1976).
[CrossRef] [PubMed]

1975 (2)

1972 (2)

H. J. Seguin, J. Tulip, B. White, “Sealed room-temperature CO-CO2 laser operating at 5 or 10 μm,” Appl. Phys. Lett. 20, 436–438 (1972).
[CrossRef]

A. Kaldor, W. B. Olson, A. G. Maki, “Pollution monitor for nitric oxide: a laser device based on the Zeeman modulation of absorption,” Science 176, 508–510 (1972).
[CrossRef] [PubMed]

Ballik, E. A.

Cheo, P. K.

Elsherbiny, M.

Eng, R. S.

Fischer, G.

Garside, B. K.

Gilden, M.

Hake, R. D.

E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, “Atmospheric water vapor measurements with an infrared (10 μm) differential-absorption lidar system,” Appl. Phys. Lett. 28, 542–543 (1976).
[CrossRef]

Hawley, J. G.

E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, “Atmospheric water vapor measurements with an infrared (10 μm) differential-absorption lidar system,” Appl. Phys. Lett. 28, 542–543 (1976).
[CrossRef]

Kaldor, A.

A. Kaldor, W. B. Olson, A. G. Maki, “Pollution monitor for nitric oxide: a laser device based on the Zeeman modulation of absorption,” Science 176, 508–510 (1972).
[CrossRef] [PubMed]

Lehmann, B.

B. Lehmann, M. Whalen, R. Zumbrunn, H. Oeschger, W. Schnell, “Isotope analysis by infrared laser absorption spectroscopy,” Appl. Phys. 13, 153–158 (1977).
[CrossRef]

Maki, A. G.

A. Kaldor, W. B. Olson, A. G. Maki, “Pollution monitor for nitric oxide: a laser device based on the Zeeman modulation of absorption,” Science 176, 508–510 (1972).
[CrossRef] [PubMed]

Menzies, R. T.

Murray, E. R.

E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, “Atmospheric water vapor measurements with an infrared (10 μm) differential-absorption lidar system,” Appl. Phys. Lett. 28, 542–543 (1976).
[CrossRef]

Nill, K. W.

Oeschger, H.

B. Lehmann, M. Whalen, R. Zumbrunn, H. Oeschger, W. Schnell, “Isotope analysis by infrared laser absorption spectroscopy,” Appl. Phys. 13, 153–158 (1977).
[CrossRef]

Olson, W. B.

A. Kaldor, W. B. Olson, A. G. Maki, “Pollution monitor for nitric oxide: a laser device based on the Zeeman modulation of absorption,” Science 176, 508–510 (1972).
[CrossRef] [PubMed]

Rosengren, L.-G.

Schnell, W.

B. Lehmann, M. Whalen, R. Zumbrunn, H. Oeschger, W. Schnell, “Isotope analysis by infrared laser absorption spectroscopy,” Appl. Phys. 13, 153–158 (1977).
[CrossRef]

W. Schnell, G. Fischer, “Carbon dioxide laser absorption coefficients of various air pollutants,” Appl. Opt. 14, 2058–2059 (1975).
[CrossRef] [PubMed]

Seguin, H. J.

H. J. Seguin, J. Tulip, B. White, “Sealed room-temperature CO-CO2 laser operating at 5 or 10 μm,” Appl. Phys. Lett. 20, 436–438 (1972).
[CrossRef]

Shewchun, J.

Shumate, M. S.

Tulip, J.

H. J. Seguin, J. Tulip, B. White, “Sealed room-temperature CO-CO2 laser operating at 5 or 10 μm,” Appl. Phys. Lett. 20, 436–438 (1972).
[CrossRef]

van der Laan, J. E.

E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, “Atmospheric water vapor measurements with an infrared (10 μm) differential-absorption lidar system,” Appl. Phys. Lett. 28, 542–543 (1976).
[CrossRef]

Wahlen, M.

Whalen, M.

B. Lehmann, M. Whalen, R. Zumbrunn, H. Oeschger, W. Schnell, “Isotope analysis by infrared laser absorption spectroscopy,” Appl. Phys. 13, 153–158 (1977).
[CrossRef]

White, B.

H. J. Seguin, J. Tulip, B. White, “Sealed room-temperature CO-CO2 laser operating at 5 or 10 μm,” Appl. Phys. Lett. 20, 436–438 (1972).
[CrossRef]

Zumbrunn, R.

B. Lehmann, M. Whalen, R. Zumbrunn, H. Oeschger, W. Schnell, “Isotope analysis by infrared laser absorption spectroscopy,” Appl. Phys. 13, 153–158 (1977).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. (1)

B. Lehmann, M. Whalen, R. Zumbrunn, H. Oeschger, W. Schnell, “Isotope analysis by infrared laser absorption spectroscopy,” Appl. Phys. 13, 153–158 (1977).
[CrossRef]

Appl. Phys. Lett. (2)

H. J. Seguin, J. Tulip, B. White, “Sealed room-temperature CO-CO2 laser operating at 5 or 10 μm,” Appl. Phys. Lett. 20, 436–438 (1972).
[CrossRef]

E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, “Atmospheric water vapor measurements with an infrared (10 μm) differential-absorption lidar system,” Appl. Phys. Lett. 28, 542–543 (1976).
[CrossRef]

Opt. Lett. (1)

Science (1)

A. Kaldor, W. B. Olson, A. G. Maki, “Pollution monitor for nitric oxide: a laser device based on the Zeeman modulation of absorption,” Science 176, 508–510 (1972).
[CrossRef] [PubMed]

Other (1)

See, e.g., Handbook of Chemistry and Physics,49th ed. (Chemical Rubber Co., Cleveland, Ohio, 1968–69), pp. B-6-B-7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics