Abstract

Lasing action was achieved on the B2Σ+X2Σ+ transition of HgBr by dissociating HgBr2 vapor by electron collision in a transverse electric discharge. The lasing wavelengths, consisting of six lines between 502 and 505 nm, are identical with the ones previously measured by excitation through photodissociation.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. J. Schimitschek, J. E. Celto, J. A. Trias, “Mercuric bromide photodissociation laser,” Appl. Phys. Lett. 31, 608–610 (1977).
    [CrossRef]
  2. E. J. Schimitschek, J. E. Celto, J. A. Trias (to be published).
  3. R. N. Zare, D. R. Herschbach, “Atomic and molecular fluorescence excited by photodissociation,” Appl. Opt. Suppl. 2, 193–200 (1965).
  4. K. Wieland, “Bandenspektren der Quecksilber-, Cadmium- und Zinkhalogenide,” Helv. Phys. Acta 2, 46–76 (1929).
  5. N. Djeu, C. Mazza, “Laser induced fluorescence measurement of HgBr (B → X) radiative lifetime,” Chem. Phys. Lett. 46, 172–174 (1977).
    [CrossRef]
  6. L. L. Quill, ed., The Chemistry and Metallurgy of Miscellaneous Materials (McGraw-Hill, New York, 1950).
  7. The data in Fig. 3 were taken by us; previously published data on the extinction coefficients of HgX2 are in qualitative agreement with our measurements. The previous paper was by P. Tempet, J. R. McDonald, S. P. Glynn, C. H. Kendrow, J. L. Roeber, K. Weiss, J. Chem. Phys. 56, 5746 (1972).
    [CrossRef]
  8. K. Wieland, “Absorptions und Fluoreszenzspektren dampfförmiger Quecksilberhalogenide II. HgBr2 and HgCl2,” Z. Phys. 77, 157–165 (1932).
    [CrossRef]
  9. J. H. Parks, “Laser action on the B2Σ+1/2 → X2Σ+1/2 band of HgBr at 5018 Å,” Appl. Phys. Lett. 31, 297–300 (1977).
    [CrossRef]
  10. K. Wieland, “Molekülspektren mit Ionencharakter und ihre Beeinflussung durch Fremdgase,” in Contribution to the Study of Molecular Structures, Vol. commem. Victor Henri (Maison Desoer, Liège, 1948), pp. 229– 237.
  11. E. J. Schimitschek, J. E. Celto (unpublished).

1977 (3)

E. J. Schimitschek, J. E. Celto, J. A. Trias, “Mercuric bromide photodissociation laser,” Appl. Phys. Lett. 31, 608–610 (1977).
[CrossRef]

N. Djeu, C. Mazza, “Laser induced fluorescence measurement of HgBr (B → X) radiative lifetime,” Chem. Phys. Lett. 46, 172–174 (1977).
[CrossRef]

J. H. Parks, “Laser action on the B2Σ+1/2 → X2Σ+1/2 band of HgBr at 5018 Å,” Appl. Phys. Lett. 31, 297–300 (1977).
[CrossRef]

1972 (1)

The data in Fig. 3 were taken by us; previously published data on the extinction coefficients of HgX2 are in qualitative agreement with our measurements. The previous paper was by P. Tempet, J. R. McDonald, S. P. Glynn, C. H. Kendrow, J. L. Roeber, K. Weiss, J. Chem. Phys. 56, 5746 (1972).
[CrossRef]

1965 (1)

R. N. Zare, D. R. Herschbach, “Atomic and molecular fluorescence excited by photodissociation,” Appl. Opt. Suppl. 2, 193–200 (1965).

1932 (1)

K. Wieland, “Absorptions und Fluoreszenzspektren dampfförmiger Quecksilberhalogenide II. HgBr2 and HgCl2,” Z. Phys. 77, 157–165 (1932).
[CrossRef]

1929 (1)

K. Wieland, “Bandenspektren der Quecksilber-, Cadmium- und Zinkhalogenide,” Helv. Phys. Acta 2, 46–76 (1929).

Celto, J. E.

E. J. Schimitschek, J. E. Celto, J. A. Trias, “Mercuric bromide photodissociation laser,” Appl. Phys. Lett. 31, 608–610 (1977).
[CrossRef]

E. J. Schimitschek, J. E. Celto, J. A. Trias (to be published).

E. J. Schimitschek, J. E. Celto (unpublished).

Djeu, N.

N. Djeu, C. Mazza, “Laser induced fluorescence measurement of HgBr (B → X) radiative lifetime,” Chem. Phys. Lett. 46, 172–174 (1977).
[CrossRef]

Glynn, S. P.

The data in Fig. 3 were taken by us; previously published data on the extinction coefficients of HgX2 are in qualitative agreement with our measurements. The previous paper was by P. Tempet, J. R. McDonald, S. P. Glynn, C. H. Kendrow, J. L. Roeber, K. Weiss, J. Chem. Phys. 56, 5746 (1972).
[CrossRef]

Herschbach, D. R.

R. N. Zare, D. R. Herschbach, “Atomic and molecular fluorescence excited by photodissociation,” Appl. Opt. Suppl. 2, 193–200 (1965).

Kendrow, C. H.

The data in Fig. 3 were taken by us; previously published data on the extinction coefficients of HgX2 are in qualitative agreement with our measurements. The previous paper was by P. Tempet, J. R. McDonald, S. P. Glynn, C. H. Kendrow, J. L. Roeber, K. Weiss, J. Chem. Phys. 56, 5746 (1972).
[CrossRef]

Mazza, C.

N. Djeu, C. Mazza, “Laser induced fluorescence measurement of HgBr (B → X) radiative lifetime,” Chem. Phys. Lett. 46, 172–174 (1977).
[CrossRef]

McDonald, J. R.

The data in Fig. 3 were taken by us; previously published data on the extinction coefficients of HgX2 are in qualitative agreement with our measurements. The previous paper was by P. Tempet, J. R. McDonald, S. P. Glynn, C. H. Kendrow, J. L. Roeber, K. Weiss, J. Chem. Phys. 56, 5746 (1972).
[CrossRef]

Parks, J. H.

J. H. Parks, “Laser action on the B2Σ+1/2 → X2Σ+1/2 band of HgBr at 5018 Å,” Appl. Phys. Lett. 31, 297–300 (1977).
[CrossRef]

Roeber, J. L.

The data in Fig. 3 were taken by us; previously published data on the extinction coefficients of HgX2 are in qualitative agreement with our measurements. The previous paper was by P. Tempet, J. R. McDonald, S. P. Glynn, C. H. Kendrow, J. L. Roeber, K. Weiss, J. Chem. Phys. 56, 5746 (1972).
[CrossRef]

Schimitschek, E. J.

E. J. Schimitschek, J. E. Celto, J. A. Trias, “Mercuric bromide photodissociation laser,” Appl. Phys. Lett. 31, 608–610 (1977).
[CrossRef]

E. J. Schimitschek, J. E. Celto, J. A. Trias (to be published).

E. J. Schimitschek, J. E. Celto (unpublished).

Tempet, P.

The data in Fig. 3 were taken by us; previously published data on the extinction coefficients of HgX2 are in qualitative agreement with our measurements. The previous paper was by P. Tempet, J. R. McDonald, S. P. Glynn, C. H. Kendrow, J. L. Roeber, K. Weiss, J. Chem. Phys. 56, 5746 (1972).
[CrossRef]

Trias, J. A.

E. J. Schimitschek, J. E. Celto, J. A. Trias, “Mercuric bromide photodissociation laser,” Appl. Phys. Lett. 31, 608–610 (1977).
[CrossRef]

E. J. Schimitschek, J. E. Celto, J. A. Trias (to be published).

Weiss, K.

The data in Fig. 3 were taken by us; previously published data on the extinction coefficients of HgX2 are in qualitative agreement with our measurements. The previous paper was by P. Tempet, J. R. McDonald, S. P. Glynn, C. H. Kendrow, J. L. Roeber, K. Weiss, J. Chem. Phys. 56, 5746 (1972).
[CrossRef]

Wieland, K.

K. Wieland, “Absorptions und Fluoreszenzspektren dampfförmiger Quecksilberhalogenide II. HgBr2 and HgCl2,” Z. Phys. 77, 157–165 (1932).
[CrossRef]

K. Wieland, “Bandenspektren der Quecksilber-, Cadmium- und Zinkhalogenide,” Helv. Phys. Acta 2, 46–76 (1929).

K. Wieland, “Molekülspektren mit Ionencharakter und ihre Beeinflussung durch Fremdgase,” in Contribution to the Study of Molecular Structures, Vol. commem. Victor Henri (Maison Desoer, Liège, 1948), pp. 229– 237.

Zare, R. N.

R. N. Zare, D. R. Herschbach, “Atomic and molecular fluorescence excited by photodissociation,” Appl. Opt. Suppl. 2, 193–200 (1965).

Appl. Opt. Suppl. (1)

R. N. Zare, D. R. Herschbach, “Atomic and molecular fluorescence excited by photodissociation,” Appl. Opt. Suppl. 2, 193–200 (1965).

Appl. Phys. Lett. (2)

E. J. Schimitschek, J. E. Celto, J. A. Trias, “Mercuric bromide photodissociation laser,” Appl. Phys. Lett. 31, 608–610 (1977).
[CrossRef]

J. H. Parks, “Laser action on the B2Σ+1/2 → X2Σ+1/2 band of HgBr at 5018 Å,” Appl. Phys. Lett. 31, 297–300 (1977).
[CrossRef]

Chem. Phys. Lett. (1)

N. Djeu, C. Mazza, “Laser induced fluorescence measurement of HgBr (B → X) radiative lifetime,” Chem. Phys. Lett. 46, 172–174 (1977).
[CrossRef]

Helv. Phys. Acta (1)

K. Wieland, “Bandenspektren der Quecksilber-, Cadmium- und Zinkhalogenide,” Helv. Phys. Acta 2, 46–76 (1929).

J. Chem. Phys. (1)

The data in Fig. 3 were taken by us; previously published data on the extinction coefficients of HgX2 are in qualitative agreement with our measurements. The previous paper was by P. Tempet, J. R. McDonald, S. P. Glynn, C. H. Kendrow, J. L. Roeber, K. Weiss, J. Chem. Phys. 56, 5746 (1972).
[CrossRef]

Z. Phys. (1)

K. Wieland, “Absorptions und Fluoreszenzspektren dampfförmiger Quecksilberhalogenide II. HgBr2 and HgCl2,” Z. Phys. 77, 157–165 (1932).
[CrossRef]

Other (4)

L. L. Quill, ed., The Chemistry and Metallurgy of Miscellaneous Materials (McGraw-Hill, New York, 1950).

E. J. Schimitschek, J. E. Celto, J. A. Trias (to be published).

K. Wieland, “Molekülspektren mit Ionencharakter und ihre Beeinflussung durch Fremdgase,” in Contribution to the Study of Molecular Structures, Vol. commem. Victor Henri (Maison Desoer, Liège, 1948), pp. 229– 237.

E. J. Schimitschek, J. E. Celto (unpublished).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

a: Geometry of transverse discharge cell; details to be found in text, b: Schematic of electric discharge circuit; the pulse generator provided 10-V pulses for the two trigger generators (TRG), which in turn provided up to 30-kV output; SG denotes the spark-gap switch.

Fig. 2
Fig. 2

a: Band emission BX of HgBr from the discharge in HgBr2 vapor and 800-Torr He; cell temperature is 150° C. b: laser output of the HgBr radical; the lasing wavelengths are, from 1 to 6, respectively, 502.0, 502.3, 502.6, 503.9.504.2, and 504.6 nm.

Fig. 3
Fig. 3

Extinction coefficient and excitation spectra of HgBr2 vapor from 190 to 240 nm. The BX band fluorescence was monitored at a right angle to the exciting light. Path length is 5 cm; cell temperature, 120°C.

Metrics