Abstract

A multidither adaptive optical system has been used to correct for thermal blooming distortions. Stable correction factors of from 1.3 to 4 have been observed. Turbulence correction in the presence of blooming has also been observed. It is suggested that the geometry of the blooming scenario (location of absorption region, slue rate, etc.) and the parameters of the adaptive system (bandwidth, correction algorithm, etc.) can strongly affect the observed correction factor.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Smith, “High power laser propagation: thermal blooming,” Proc. IEEE, to be published.
  2. W. B. Bridges, J. E. Pearson, “Thermal blooming compensation using coherent optical adaptive technqiues,” Appl. Phys. Lett. 26, 539 (1975).
    [CrossRef]
  3. L. Bradley, J. Herrmann, “Phase compensation for thermal blooming,” Appl. Opt. 13, 331 (1974).
    [CrossRef] [PubMed]
  4. C. A. Primmerman, D. G. Fouche, “Thermal blooming compensation: experimental observations using a deformable mirror system,” Appl. Opt. 15, 990 (1976).
    [CrossRef] [PubMed]
  5. J. Herrmann, “Properties of phase conjugate adaptive optical systems,” J. Opt. Soc. Am. 67, 290 (1977).
    [CrossRef]
  6. J. E. Pearson, W. P. Brown, S. A. Kokorowski, T. R. O’Meara, M. E. Pedinoff, “COAT compensation for turbulence and thermal blooming with realistic, complex targets,” J. Opt. Soc. Am. 65, 1212A (1975).
  7. A return-wave system determines the phase errors by measuring the error on a wavefront that has returned from the target; an outgoing-wave system senses the effect of phase perturbations on the wave going to the target. The distinction is further discussed by T. R. O’Meara in “The multidither principle in adaptive optics,” J. Opt. Soc. Am. 67, 306 (1977).
    [CrossRef]
  8. W. P. Brown, “Computer simulation of adaptive optical systems,” Final Tech. Rep. on contract N60921-74-C-0249, Sept.1975, available from Defense Documentation Center.
  9. W. P. Brown, Final report on adaptive optics feasibility study, Apr.1977 (unpublished).
  10. J. E. Pearson, W. B. Bridges, S. Hansen, T. A. Nussmeier, M. E. Pedinoff, “Coherent optical adaptive techniques: design and performance of an 18-element, visible, multidither COAT system,” Appl. Opt. 15, 611 (1976).
    [CrossRef] [PubMed]
  11. J. E. Pearson, “COAT measurements and analysis,” RADC-TR-75-47, Feb.1975, available from Defense Documentation Center.
  12. J. E. Pearson, “Atmospheric turbulence compensation using coherent optical adaptive techniques,” Appl. Opt. 15, 622 (1976).
    [CrossRef] [PubMed]
  13. J. W. Hardy, J. E. Lefebvre, C. L. Koliopoulos, “Real-time atmospheric compensation,” J. Opt. Soc. Am. 67, 360 (1977).
    [CrossRef]
  14. C. B. Hogge, “Propagation of high energy laser beams in the atmosphere,” in High Energy Lasers and Their Applications, S. Jacobs, ed. (Addison-Wesley, Reading, Mass., 1974).
  15. J. N. Hayes, “Thermal blooming of rapidly slued laser beams,” Appl. Opt. 13, 2072 (1974).
    [CrossRef] [PubMed]
  16. J. Wallace, J. Q. Lilly, “Thermal blooming of repetitively pulsed laser beams,” J. Opt. Soc. Am. 64, 1651 (1974).
    [CrossRef]
  17. J. Wallace, I. Itzkam, J. Camm, “Irradiance tailoring as a method of reducing thermal blooming in an absorbing medium,” J. Opt. Soc. Am. 64, 1123 (1974).
    [CrossRef]
  18. J. E. Pearson, C. Yeh, W. P. Brown, “Propagation of a beam with an on-axis null in the presence of thermal blooming,” J. Opt. Soc. Am. 66, 1384 (1976).
    [CrossRef]

1977

1976

1975

W. B. Bridges, J. E. Pearson, “Thermal blooming compensation using coherent optical adaptive technqiues,” Appl. Phys. Lett. 26, 539 (1975).
[CrossRef]

J. E. Pearson, W. P. Brown, S. A. Kokorowski, T. R. O’Meara, M. E. Pedinoff, “COAT compensation for turbulence and thermal blooming with realistic, complex targets,” J. Opt. Soc. Am. 65, 1212A (1975).

1974

Bradley, L.

Bridges, W. B.

Brown, W. P.

J. E. Pearson, C. Yeh, W. P. Brown, “Propagation of a beam with an on-axis null in the presence of thermal blooming,” J. Opt. Soc. Am. 66, 1384 (1976).
[CrossRef]

J. E. Pearson, W. P. Brown, S. A. Kokorowski, T. R. O’Meara, M. E. Pedinoff, “COAT compensation for turbulence and thermal blooming with realistic, complex targets,” J. Opt. Soc. Am. 65, 1212A (1975).

W. P. Brown, “Computer simulation of adaptive optical systems,” Final Tech. Rep. on contract N60921-74-C-0249, Sept.1975, available from Defense Documentation Center.

W. P. Brown, Final report on adaptive optics feasibility study, Apr.1977 (unpublished).

Camm, J.

Fouche, D. G.

Hansen, S.

Hardy, J. W.

Hayes, J. N.

Herrmann, J.

Hogge, C. B.

C. B. Hogge, “Propagation of high energy laser beams in the atmosphere,” in High Energy Lasers and Their Applications, S. Jacobs, ed. (Addison-Wesley, Reading, Mass., 1974).

Itzkam, I.

Kokorowski, S. A.

J. E. Pearson, W. P. Brown, S. A. Kokorowski, T. R. O’Meara, M. E. Pedinoff, “COAT compensation for turbulence and thermal blooming with realistic, complex targets,” J. Opt. Soc. Am. 65, 1212A (1975).

Koliopoulos, C. L.

Lefebvre, J. E.

Lilly, J. Q.

Nussmeier, T. A.

O’Meara, T. R.

Pearson, J. E.

J. E. Pearson, W. B. Bridges, S. Hansen, T. A. Nussmeier, M. E. Pedinoff, “Coherent optical adaptive techniques: design and performance of an 18-element, visible, multidither COAT system,” Appl. Opt. 15, 611 (1976).
[CrossRef] [PubMed]

J. E. Pearson, C. Yeh, W. P. Brown, “Propagation of a beam with an on-axis null in the presence of thermal blooming,” J. Opt. Soc. Am. 66, 1384 (1976).
[CrossRef]

J. E. Pearson, “Atmospheric turbulence compensation using coherent optical adaptive techniques,” Appl. Opt. 15, 622 (1976).
[CrossRef] [PubMed]

W. B. Bridges, J. E. Pearson, “Thermal blooming compensation using coherent optical adaptive technqiues,” Appl. Phys. Lett. 26, 539 (1975).
[CrossRef]

J. E. Pearson, W. P. Brown, S. A. Kokorowski, T. R. O’Meara, M. E. Pedinoff, “COAT compensation for turbulence and thermal blooming with realistic, complex targets,” J. Opt. Soc. Am. 65, 1212A (1975).

J. E. Pearson, “COAT measurements and analysis,” RADC-TR-75-47, Feb.1975, available from Defense Documentation Center.

Pedinoff, M. E.

J. E. Pearson, W. B. Bridges, S. Hansen, T. A. Nussmeier, M. E. Pedinoff, “Coherent optical adaptive techniques: design and performance of an 18-element, visible, multidither COAT system,” Appl. Opt. 15, 611 (1976).
[CrossRef] [PubMed]

J. E. Pearson, W. P. Brown, S. A. Kokorowski, T. R. O’Meara, M. E. Pedinoff, “COAT compensation for turbulence and thermal blooming with realistic, complex targets,” J. Opt. Soc. Am. 65, 1212A (1975).

Primmerman, C. A.

Smith, D. C.

D. C. Smith, “High power laser propagation: thermal blooming,” Proc. IEEE, to be published.

Wallace, J.

Yeh, C.

Appl. Opt.

Appl. Phys. Lett.

W. B. Bridges, J. E. Pearson, “Thermal blooming compensation using coherent optical adaptive technqiues,” Appl. Phys. Lett. 26, 539 (1975).
[CrossRef]

J. Opt. Soc. Am.

Other

W. P. Brown, “Computer simulation of adaptive optical systems,” Final Tech. Rep. on contract N60921-74-C-0249, Sept.1975, available from Defense Documentation Center.

W. P. Brown, Final report on adaptive optics feasibility study, Apr.1977 (unpublished).

J. E. Pearson, “COAT measurements and analysis,” RADC-TR-75-47, Feb.1975, available from Defense Documentation Center.

C. B. Hogge, “Propagation of high energy laser beams in the atmosphere,” in High Energy Lasers and Their Applications, S. Jacobs, ed. (Addison-Wesley, Reading, Mass., 1974).

D. C. Smith, “High power laser propagation: thermal blooming,” Proc. IEEE, to be published.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Thermal blooming compensation with a thin, static-liquid blooming cell located in the near field of the transmitter. The dashed curve is theoretical and the observed compensation is limited by the number of COAT channels (see Ref. 2).

Fig. 2
Fig. 2

Target irradiance with COAT correction for various thin-cell locations. The quantity d is the distance of the first liquid surface from the effective transmitter plane. The two curves labeled d/Z = 0.025 are the same as the peak irradiance curves in Fig. 1.

Fig. 3
Fig. 3

Thermal blooming compensation with a flowing liquid medium when the medium is in the first 72% of the path. Correction factor = 1.6. Correction for a single phase screen of artificial turbulence (CN2 ≠ 0) is also shown. The lack of complete correction at low powers for CN2 ≠ 0 is a result of an insufficient number of COAT channels for the spatial frequencies in the turbulence screen used.

Metrics