Abstract

We demonstrate that picosecond mode-locked laser-based degenerate four-wave mixing can be detected with good signal-to-noise ratios in an optically thin flame and that detailed turbulence statistics can be acquired by use of this technique. A regeneratively mode-locked Ti:sapphire laser was tuned to the 42S1/2-42P1/2 transition in atomic potassium (which was doped into the flame) at 769.9 nm. Using the all-forward degenerate four-wave mixing geometry, we achieved signal-to-noise ratios of 70:1 without the use of a spatial filter. A sensitivity curve and a method for acquiring turbulence statistics are presented.

© 1994 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantitative concentration measurements of atomic sodium in an atmospheric hydrocarbon flame with asynchronous optical sampling

Gregory J. Fiechtner, Galen B. King, and Normand M. Laurendeau
Appl. Opt. 34(6) 1117-1126 (1995)

Measurements of hydroxyl concentrations and lifetimes in laminar flames using picosecond time-resolved laser-induced fluorescence

Thomas A. Reichardt, Michael S. Klassen, Galen B. King, and Normand M. Laurendeau
Appl. Opt. 35(12) 2125-2139 (1996)

Experimental investigation of saturated degenerate four-wave mixing for quantitative concentration measurements

Thomas A. Reichardt, William C. Giancola, Christopher M. Shappert, and Robert P. Lucht
Appl. Opt. 38(33) 6951-6961 (1999)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription