Abstract

We describe a novel technique, based on optical coherence tomography, for enhanced optical sectioning in confocal microscopy. Confocal imaging deep into highly scattering media is demonstrated and compared with the predictions of a single-backscatter theory.

© 1994 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High speed optical coherence microscopy with autofocus adjustment and a miniaturized endoscopic imaging probe

Aaron D. Aguirre, Juergen Sawinski, Shu-Wei Huang, Chao Zhou, Winfried Denk, and James G. Fujimoto
Opt. Express 18(5) 4222-4239 (2010)

Combined scanning optical coherence and two-photon-excited fluorescence microscopy

E. Beaurepaire, L. Moreaux, F. Amblard, and J. Mertz
Opt. Lett. 24(14) 969-971 (1999)

High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging

A. D. Aguirre, P. Hsiung, T. H. Ko, I. Hartl, and J. G. Fujimoto
Opt. Lett. 28(21) 2064-2066 (2003)

References

  • View by:
  • |
  • |
  • |

  1. T. Wilson, in Confocal Microscopy, T. Wilson, ed. (Academic, London, 1990), pp. 1–64.
    [Crossref]
  2. C. J. Koester, in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, New York, 1990), pp. 207–214.
    [Crossref]
  3. R. C. Youngquist, S. Carr, and D. E. N. Davies, Opt. Lett. 12, 158 (1987).
    [Crossref] [PubMed]
  4. K. Takada, I. Yokohama, K. Chida, and J. Noda, Appl. Opt. 26, 1063 (1987).
  5. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, Opt. Lett. 17, 151 (1992).
    [Crossref] [PubMed]
  6. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
    [Crossref] [PubMed]
  7. M. R. Hee, J. A. Izatt, J. M. Jacobson, J. G. Fujimoto, and E. A. Swanson, Opt. Lett. 18, 950 (1993).
    [Crossref] [PubMed]
  8. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, Opt. Lett. 18, 1864 (1993).
    [Crossref] [PubMed]
  9. S. Kimura and T. Wilson, Appl. Opt. 30, 2143 (1991).
    [Crossref] [PubMed]
  10. L. Guniunas, R. Juskaitis, and S. V. Shatalin, Electron. Lett. 27, 724 (1991).
    [Crossref]
  11. T. Sawatari, Appl. Opt. 12, 2768 (1973).
    [Crossref] [PubMed]
  12. S. R. Chinn and E. A. Swanson, Electron. Lett. 29, 2025 (1993).
    [Crossref]
  13. C. M. Sonnenschein and F. A. Horrigan, Appl. Opt. 10, 1600 (1971).
    [Crossref] [PubMed]
  14. J. M. Schmitt, A Knuttel, A. Gandjbakhche, and R. F. Bonner, Proc. Soc. Photo-Opt. Instrum. Eng. 1889, 197 (1993).

1993 (4)

1992 (1)

1991 (3)

L. Guniunas, R. Juskaitis, and S. V. Shatalin, Electron. Lett. 27, 724 (1991).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[Crossref] [PubMed]

S. Kimura and T. Wilson, Appl. Opt. 30, 2143 (1991).
[Crossref] [PubMed]

1987 (2)

K. Takada, I. Yokohama, K. Chida, and J. Noda, Appl. Opt. 26, 1063 (1987).

R. C. Youngquist, S. Carr, and D. E. N. Davies, Opt. Lett. 12, 158 (1987).
[Crossref] [PubMed]

1973 (1)

1971 (1)

Bonner, R. F.

J. M. Schmitt, A Knuttel, A. Gandjbakhche, and R. F. Bonner, Proc. Soc. Photo-Opt. Instrum. Eng. 1889, 197 (1993).

Carr, S.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[Crossref] [PubMed]

Chida, K.

K. Takada, I. Yokohama, K. Chida, and J. Noda, Appl. Opt. 26, 1063 (1987).

Chinn, S. R.

S. R. Chinn and E. A. Swanson, Electron. Lett. 29, 2025 (1993).
[Crossref]

Davies, D. E. N.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[Crossref] [PubMed]

Fujimoto, J. G.

Gandjbakhche, A.

J. M. Schmitt, A Knuttel, A. Gandjbakhche, and R. F. Bonner, Proc. Soc. Photo-Opt. Instrum. Eng. 1889, 197 (1993).

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[Crossref] [PubMed]

Guniunas, L.

L. Guniunas, R. Juskaitis, and S. V. Shatalin, Electron. Lett. 27, 724 (1991).
[Crossref]

Hee, M. R.

Horrigan, F. A.

Huang, D.

Izatt, J. A.

Jacobson, J. M.

Juskaitis, R.

L. Guniunas, R. Juskaitis, and S. V. Shatalin, Electron. Lett. 27, 724 (1991).
[Crossref]

Kimura, S.

Knuttel, A

J. M. Schmitt, A Knuttel, A. Gandjbakhche, and R. F. Bonner, Proc. Soc. Photo-Opt. Instrum. Eng. 1889, 197 (1993).

Koester, C. J.

C. J. Koester, in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, New York, 1990), pp. 207–214.
[Crossref]

Lin, C. P.

Noda, J.

K. Takada, I. Yokohama, K. Chida, and J. Noda, Appl. Opt. 26, 1063 (1987).

Puliafito, C. A.

Sawatari, T.

Schmitt, J. M.

J. M. Schmitt, A Knuttel, A. Gandjbakhche, and R. F. Bonner, Proc. Soc. Photo-Opt. Instrum. Eng. 1889, 197 (1993).

Schuman, J. S.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, Opt. Lett. 18, 1864 (1993).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[Crossref] [PubMed]

Shatalin, S. V.

L. Guniunas, R. Juskaitis, and S. V. Shatalin, Electron. Lett. 27, 724 (1991).
[Crossref]

Sonnenschein, C. M.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[Crossref] [PubMed]

Swanson, E. A.

Takada, K.

K. Takada, I. Yokohama, K. Chida, and J. Noda, Appl. Opt. 26, 1063 (1987).

Wilson, T.

S. Kimura and T. Wilson, Appl. Opt. 30, 2143 (1991).
[Crossref] [PubMed]

T. Wilson, in Confocal Microscopy, T. Wilson, ed. (Academic, London, 1990), pp. 1–64.
[Crossref]

Yokohama, I.

K. Takada, I. Yokohama, K. Chida, and J. Noda, Appl. Opt. 26, 1063 (1987).

Youngquist, R. C.

Appl. Opt. (4)

Electron. Lett. (2)

L. Guniunas, R. Juskaitis, and S. V. Shatalin, Electron. Lett. 27, 724 (1991).
[Crossref]

S. R. Chinn and E. A. Swanson, Electron. Lett. 29, 2025 (1993).
[Crossref]

Opt. Lett. (4)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

J. M. Schmitt, A Knuttel, A. Gandjbakhche, and R. F. Bonner, Proc. Soc. Photo-Opt. Instrum. Eng. 1889, 197 (1993).

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[Crossref] [PubMed]

Other (2)

T. Wilson, in Confocal Microscopy, T. Wilson, ed. (Academic, London, 1990), pp. 1–64.
[Crossref]

C. J. Koester, in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, New York, 1990), pp. 207–214.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the optical coherence microscope and the model geometry: PZT, piezoelectric transducer; A/D, analog-to-digital converter.

Fig. 2
Fig. 2

Experimental axial point-spread function with a 20× microscope objective (N.A. = 0.4) obtained by scanning a mirror through the focal plane with and without coherence gating.

Fig. 3
Fig. 3

Plots of heterodyne backscatter signal normalized to the measured reflection from a mirror versus depth in model scattering media (μs ~ 6 mm−1). Plots are shown for different focal-plane depths of a 20× microscope objective. Dashed curves, predictions of the single-backscatter model.

Fig. 4
Fig. 4

Two-dimensional images of absorbing bars embedded 700 μm deep in a scattering medium with scattering coefficient μs ~ 6 mm−1. Top left, confocal image without coherence gating (electronic noise floor −64.4 dB; image mean −50.8 dB). Bottom left, OCM (shot-noise-limited noise floor −100.8 dB). Right, plots of backscatter versus depth at positions both between (A) and over (B) the absorbing bars.

Fig. 5
Fig. 5

Parametric plot of theoretical limits to OCM, assuming D = 3.7 mm, n0 = 1.33, Lc, = 20 μm, λ = 800 nm, μb = 0.3191 μs, and E = 130 mJ.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

i s η e h ν P 0 2 R s ( z ) ,
R s ( z ) = μ b π D 2 L c exp ( - 2 μ t z ) 4 ( n 0 z ) 2 [ 1 + ( π D 2 4 λ n 0 z ) 2 ( 1 - n 0 z n 0 2 f ) 2 ] ,
n 0 z a + n 0 z ,
f a + n 0 ( f - a ) [ n 0 2 ( D 2 4 f 2 + 1 ) - D 2 4 f 2 ] 1 / 2 .
μ t z 1 1 2 ln [ π 2 D 2 4 n 0 2 λ 2 ( N . A . ) 2 ] = 1 2 ln ( π 2 4 n 0 2 M 2 ) ,
μ t z 2 1 2 ln [ E 2 h ν π μ b L c n 0 2 ( N . A . ) 2 ] ,

Metrics