Abstract

We present an experimental study of the behavior of photorefractive double phase-conjugate mirrors that illustrates recent theoretical predictions. We observe a sharp fidelity threshold that significantly depends on the specific feature size in the input beams. Furthermore, we find that if the two input beams have unequal intensities the conjugation process is asymmetric and the steady-state fidelity is better on the side of the crystal on which the more-intense beam enters.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Weiss, S. Sternklar, B. Fischer, Opt. Lett. 12, 114 (1987)Appl. Phys. Lett. 50, 483 (1987)Opt. Eng. 26, 423 (1987)
    [CrossRef] [PubMed]
  2. M. Segev, A. Yariv, Opt. Lett. 16, 1938 (1991).
    [CrossRef] [PubMed]
  3. M. Segev, D. Engin, A. Yariv, G. C. Valley, Opt. Lett. 18, 1828 (1993).
    [CrossRef] [PubMed]
  4. The note added in proof at the end of Ref. 3 was incorrectly printed. It should read “the threshold value... decreases with increasing feature size ...”.
  5. A. V. Mamaev, V. V. Shkunov, Kvantovaya Elektron. (Moscow) 19, 1111 (1992) [Sov. J. Quantum Electron. 22, 1036 (1992)].
  6. O. L. Lyubomudrov, V. V. Shkunov, Kvantovaya Elektron. (Moscow) 19, 1102 (1992) [Sov. J. Quantum Electron. 22, 1027 (1992)].
  7. R. J. Anderson, E. J. Sharp, G. L. Wood, W. W. Clark, Q. Vuong, G. J. Salamo, R. R. Neurgaonkar, Opt. Lett. 18, 986 (1993).
    [CrossRef] [PubMed]
  8. S. Weiss, M. Segev, S. Sternklar, B. Fischer, Appl. Opt. 27, 3422 (1988).
    [CrossRef] [PubMed]
  9. S. Sternklar, S. Weiss, M. Segev, B. Fischer, Appl. Opt. 25, 4518 (1986).
    [CrossRef] [PubMed]
  10. S. Sternklar, S. Weiss, M. Segev, B. Fischer, Opt. Lett. 11, 528 (1986); M. Segev, S. Weiss, B. Fischer, Appl. Phys. Lett. 50, 1397 (1987).
    [CrossRef] [PubMed]
  11. A. V. Mamaev, V. V. Shkunov, Kvantovaya Elektron. (Moscow) 17, 389 (1990) [Sov. J. Quantum Electron. 20, 323 (1990)].
  12. S. K. Kwong, M. Cronin-Golomb, A. Yariv, Appl. Phys. Lett. 45, 1016 (1984).
    [CrossRef]

1993 (2)

1992 (2)

A. V. Mamaev, V. V. Shkunov, Kvantovaya Elektron. (Moscow) 19, 1111 (1992) [Sov. J. Quantum Electron. 22, 1036 (1992)].

O. L. Lyubomudrov, V. V. Shkunov, Kvantovaya Elektron. (Moscow) 19, 1102 (1992) [Sov. J. Quantum Electron. 22, 1027 (1992)].

1991 (1)

1990 (1)

A. V. Mamaev, V. V. Shkunov, Kvantovaya Elektron. (Moscow) 17, 389 (1990) [Sov. J. Quantum Electron. 20, 323 (1990)].

1988 (1)

1987 (1)

1986 (2)

1984 (1)

S. K. Kwong, M. Cronin-Golomb, A. Yariv, Appl. Phys. Lett. 45, 1016 (1984).
[CrossRef]

Anderson, R. J.

Clark, W. W.

Cronin-Golomb, M.

S. K. Kwong, M. Cronin-Golomb, A. Yariv, Appl. Phys. Lett. 45, 1016 (1984).
[CrossRef]

Engin, D.

Fischer, B.

Kwong, S. K.

S. K. Kwong, M. Cronin-Golomb, A. Yariv, Appl. Phys. Lett. 45, 1016 (1984).
[CrossRef]

Lyubomudrov, O. L.

O. L. Lyubomudrov, V. V. Shkunov, Kvantovaya Elektron. (Moscow) 19, 1102 (1992) [Sov. J. Quantum Electron. 22, 1027 (1992)].

Mamaev, A. V.

A. V. Mamaev, V. V. Shkunov, Kvantovaya Elektron. (Moscow) 19, 1111 (1992) [Sov. J. Quantum Electron. 22, 1036 (1992)].

A. V. Mamaev, V. V. Shkunov, Kvantovaya Elektron. (Moscow) 17, 389 (1990) [Sov. J. Quantum Electron. 20, 323 (1990)].

Neurgaonkar, R. R.

Salamo, G. J.

Segev, M.

Sharp, E. J.

Shkunov, V. V.

A. V. Mamaev, V. V. Shkunov, Kvantovaya Elektron. (Moscow) 19, 1111 (1992) [Sov. J. Quantum Electron. 22, 1036 (1992)].

O. L. Lyubomudrov, V. V. Shkunov, Kvantovaya Elektron. (Moscow) 19, 1102 (1992) [Sov. J. Quantum Electron. 22, 1027 (1992)].

A. V. Mamaev, V. V. Shkunov, Kvantovaya Elektron. (Moscow) 17, 389 (1990) [Sov. J. Quantum Electron. 20, 323 (1990)].

Sternklar, S.

Valley, G. C.

Vuong, Q.

Weiss, S.

Wood, G. L.

Yariv, A.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

S. K. Kwong, M. Cronin-Golomb, A. Yariv, Appl. Phys. Lett. 45, 1016 (1984).
[CrossRef]

Kvantovaya Elektron. (3)

A. V. Mamaev, V. V. Shkunov, Kvantovaya Elektron. (Moscow) 17, 389 (1990) [Sov. J. Quantum Electron. 20, 323 (1990)].

A. V. Mamaev, V. V. Shkunov, Kvantovaya Elektron. (Moscow) 19, 1111 (1992) [Sov. J. Quantum Electron. 22, 1036 (1992)].

O. L. Lyubomudrov, V. V. Shkunov, Kvantovaya Elektron. (Moscow) 19, 1102 (1992) [Sov. J. Quantum Electron. 22, 1027 (1992)].

Opt. Lett. (5)

Other (1)

The note added in proof at the end of Ref. 3 was incorrectly printed. It should read “the threshold value... decreases with increasing feature size ...”.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Phase-conjugate images of (a) the entire resolution chart and (b) the inner frame of (a).

Fig. 2
Fig. 2

Phase-conjugation fidelity (circles) and reflectivity (crosses) as a function the power of the erasure beam. Note the fidelity threshold at erase power of 0.55 a.u. The curves are only a guide to the eye.

Fig. 3
Fig. 3

Phase-conjugation fidelity as a function the power of the erasure beam for high (crosses) and low (circles) resolutions. The curves are only a guide to the eye.

Fig. 4
Fig. 4

Phase-conjugate images of (a) maximal, (b) high, and (c) low gain for an input image that contains both resolutions. Note that most of (c) is below threshold.

Fig. 5
Fig. 5

Phase-conjugate images for unbalanced input beams of intensity ratio 1:5: (a) the beam that leaves the face on which the beam of intensity 1 enters, (b) the beam that leaves the face on which the beam of intensity 5 enters.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F = 0.5 ( v 1 + v 3 ) - v 2 max ( v 1 , v 3 ) + v 2 ,
γ ( I e ) = γ 0 1 + ( I e / I 0 ) ,

Metrics