Abstract

We measured the self-starting threshold of passive Kerr-lens mode-locking dye lasers and Ti:sapphire lasers by varying the concentration of the intracavity dilute-dye saturable absorbers that start the mode locking. From the threshold absorber concentration, we determined the strength of the intracavity pulse-broadening effects that counteract the pulse-shortening mechanisms in the self-starting stage. Experimental results agree well with theories based on phase diffusion and mode pulling.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. P. Ippen, H. A. Haus, L. Y. Liu, J. Opt. Soc. Am. B 6, 1736 (1989).
    [CrossRef]
  2. J. Wang, IEEE J. Quantum Electron. 28, 562 (1992).
    [CrossRef]
  3. F. Salin, J. Squier, M. Piché, Opt. Lett. 16, 1674 (1991).
    [CrossRef] [PubMed]
  4. S. Chen, J. Wang, Opt. Lett. 16, 1689 (1991).
    [CrossRef] [PubMed]
  5. D. Huang, M. Ulman, L. H. Acioli, H. A. Haus, J. G. Fujimoto, Opt. Lett. 17, 511 (1992).
    [CrossRef] [PubMed]
  6. M. Piché, F. Salin, Opt. Lett. 18, 1041 (1993).
    [CrossRef] [PubMed]
  7. To date, all the commercial Kerr-lens mode-locking lasers have starting mechanisms in addition to the Kerr-lens setup.
  8. H. A. Haus, E. P. Ippen, Opt. Lett. 16, 1331 (1991).
    [CrossRef] [PubMed]
  9. F. Krausz, T. Brabec, Ch. Spielmann, Opt. Lett. 16, 235 (1991).
    [CrossRef] [PubMed]
  10. E. P. Ippen, L. Y. Liu, H. A. Haus, Opt. Lett. 15, 183 (1990).
    [CrossRef] [PubMed]
  11. F. Krausz, T. Brabec, Opt. Lett. 18, 888 (1993).
    [CrossRef] [PubMed]
  12. N. Sarukura, Y. Ishida, Opt. Lett. 17, 61 (1992); the NAJ-1 mode-locked Ti:sapphire laser kit is from Clark Instrumentation, Inc., 3349 Monroe Avenue, Rochester, N.Y. 14618.
    [CrossRef] [PubMed]
  13. Y.-F. Chou, K.-L. Deng, J. Wang, Opt. Lett. 18, 1247 (1993).
    [CrossRef] [PubMed]
  14. K. Smith, N. Langford, W. Sibbett, J. R. Taylor, Opt. Lett. 10, 559 (1985).
    [CrossRef] [PubMed]
  15. N. Michailov, T. Deligeorgiev, V. Petrov, I. Tomov, Opt. Commun. 70, 137 (1989).
    [CrossRef]
  16. P. Georges, F. Salin, G. Le Saux, G. Roger, A. Brun, Opt. Lett. 15, 446 (1990).
    [CrossRef] [PubMed]
  17. K. Tamura, J. Jacobson, E. P. Ippen, H. A. Haus, J. G. Fujimoto, Opt. Lett. 18, 220 (1993).
    [CrossRef] [PubMed]

1993

1992

1991

1990

1989

N. Michailov, T. Deligeorgiev, V. Petrov, I. Tomov, Opt. Commun. 70, 137 (1989).
[CrossRef]

E. P. Ippen, H. A. Haus, L. Y. Liu, J. Opt. Soc. Am. B 6, 1736 (1989).
[CrossRef]

1985

Acioli, L. H.

Brabec, T.

Brun, A.

Chen, S.

Chou, Y.-F.

Deligeorgiev, T.

N. Michailov, T. Deligeorgiev, V. Petrov, I. Tomov, Opt. Commun. 70, 137 (1989).
[CrossRef]

Deng, K.-L.

Fujimoto, J. G.

Georges, P.

Haus, H. A.

Huang, D.

Ippen, E. P.

Ishida, Y.

Jacobson, J.

Krausz, F.

Langford, N.

Le Saux, G.

Liu, L. Y.

Michailov, N.

N. Michailov, T. Deligeorgiev, V. Petrov, I. Tomov, Opt. Commun. 70, 137 (1989).
[CrossRef]

Petrov, V.

N. Michailov, T. Deligeorgiev, V. Petrov, I. Tomov, Opt. Commun. 70, 137 (1989).
[CrossRef]

Piché, M.

Roger, G.

Salin, F.

Sarukura, N.

Sibbett, W.

Smith, K.

Spielmann, Ch.

Squier, J.

Tamura, K.

Taylor, J. R.

Tomov, I.

N. Michailov, T. Deligeorgiev, V. Petrov, I. Tomov, Opt. Commun. 70, 137 (1989).
[CrossRef]

Ulman, M.

Wang, J.

IEEE J. Quantum Electron.

J. Wang, IEEE J. Quantum Electron. 28, 562 (1992).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

N. Michailov, T. Deligeorgiev, V. Petrov, I. Tomov, Opt. Commun. 70, 137 (1989).
[CrossRef]

Opt. Lett.

Other

To date, all the commercial Kerr-lens mode-locking lasers have starting mechanisms in addition to the Kerr-lens setup.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagrams of the passively Kerr-lens mode-locked (a) Rhodamine 590 dye laser and (b) Ti:sapphire laser. R’s, reflectors; HR’s, high reflectors.

Fig. 2
Fig. 2

Mode-locking-threshold measurements with the dye laser. Solid curve, prediction of the gain saturation model; shaded band, prediction of the phase diffusion theories. In our measurements of the beat-note linewidth the sampling time is 10 ms. The linewidth fluctuates near 1.5 kHz with a 1.8-octave standard deviation. Filled circles, experimental data.

Fig. 3
Fig. 3

Mode-locking threshold measurements with the Ti:sapphire laser. Solid curve, prediction of the gain saturation model; shaded band, prediction of the phase diffusion theories. In our measurements of the beat-note linewidth the sampling time is 20 ms. The linewidth fluctuates near 590 Hz with a 0.7-octave standard deviation. Filled circles, experimental data.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

1 τ d τ d n = - l σ a E 2 ω A a [ f ( τ T a ) - h ( τ T a ) ] , f ( x ) = x + 4 8 ( x + 2 ) 2 ,             h ( x ) = x 3 + 8 x 2 + 28 x + 64 32 ( x + 2 ) 4 ,
1 τ d τ d n = T R τ c ,
κ / g > β σ τ ,
β = ( σ g / A g σ a / A a ) s ( t ) s ( t ) exp ( - t - t T g ) d t d t s ( t ) s ( t ) exp ( - t - t T a ) d t d t ,

Metrics