Abstract

We have shown theoretically and experimentally that very high conversion efficiencies can be obtained in high-peak-power wavelength converters utilizing small amounts of feedback, at fluences similar to the no-feedback case. Maximum efficiencies are obtained with radially varying reflectivity profiles. We have demonstrated the concept, using second-harmonic generation in a deuterated potassium dihydrogen phosphate crystal in which 70% energy conversion was obtained, in agreement with simulation results. Energy conversion efficiencies of 56% were also obtained in a beta-barium borate optical parametric oscillator.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, G. D. Boyd, J. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
    [CrossRef]
  2. W. J. Kozlovsky, C. D. Nabors, R. L. Byer, IEEE J. Quantum Electron. 24, 913 (1988).
    [CrossRef]
  3. W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
    [CrossRef]
  4. K Friedler, S. Schiller, R. Paschotta, P. Kurz, J. Mlynek, Opt. Lett. 18, 1786 (1993).
    [CrossRef]
  5. A Yariv, Introduction to Optical Electronics (Holt, Rinehart & Winston, New York, 1971), Chap. 8, p. 188.

1993 (1)

1990 (1)

W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[CrossRef]

1988 (1)

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, IEEE J. Quantum Electron. 24, 913 (1988).
[CrossRef]

1966 (1)

A. Ashkin, G. D. Boyd, J. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
[CrossRef]

Ashkin, A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
[CrossRef]

Bona, G. L.

W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[CrossRef]

Boyd, G. D.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
[CrossRef]

Byer, R. L.

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, IEEE J. Quantum Electron. 24, 913 (1988).
[CrossRef]

Dziedzic, J. M.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
[CrossRef]

Friedler, K

Kozlovsky, W. J.

W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[CrossRef]

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, IEEE J. Quantum Electron. 24, 913 (1988).
[CrossRef]

Kurz, P.

Latta, E. E.

W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[CrossRef]

Lenth, W.

W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[CrossRef]

Mlynek, J.

Moser, A.

W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[CrossRef]

Nabors, C. D.

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, IEEE J. Quantum Electron. 24, 913 (1988).
[CrossRef]

Paschotta, R.

Schiller, S.

Yariv, A

A Yariv, Introduction to Optical Electronics (Holt, Rinehart & Winston, New York, 1971), Chap. 8, p. 188.

Appl. Phys. Lett. (1)

W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[CrossRef]

IEEE J. Quantum Electron. (2)

A. Ashkin, G. D. Boyd, J. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
[CrossRef]

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, IEEE J. Quantum Electron. 24, 913 (1988).
[CrossRef]

Opt. Lett. (1)

Other (1)

A Yariv, Introduction to Optical Electronics (Holt, Rinehart & Winston, New York, 1971), Chap. 8, p. 188.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical schematics of second-harmonic generator configurations: (a) single pass, (b) with pump feedback in linear resonator, (c) with pump feedback in a ring resonator. Ml, partially reflective mirror at the laser wavelength; M2, dichroic mirror with high reflectivity at the laser wavelength and high transmission at the second-harmonic wavelength; M3, high-reflectivity mirror at the laser wavelength.

Fig. 2
Fig. 2

Calculated SHG (a) conversion efficiency and (b) pump fluence as a function of SHG nonlinear drive for a Gaussian beam and Gaussian pulse waveform. The parameters in parentheses are the on-axis value and the taper of the feedback mirror reflectivity.

Fig. 3
Fig. 3

Calculated third-harmonic generation (a) conversion efficiency and (b) mixing crystal fluence, fundamental plus second harmonic, as a function of mixing nonlinear drive for a super-Gaussian beam (n = 3) and Gaussian pulse waveform. The parameters in parentheses are the on-axis value and the taper of the feedback mirror reflectivities for the fundamental and second-harmonic waves.

Fig. 4
Fig. 4

Calculated (+) and measured (solid curve) SHG conversion efficiencies as a function of input laser energy for a ring resonator with 24% pump feedback.

Fig. 5
Fig. 5

Digitized waveform of input and depleted pump pulses for an optical parametric ring oscillator with 13% pump feedback. Measured energy conversion is 56%.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R f ( r ) = R 0 [ 1 + b ( r / w ) 2 ] ,

Metrics