Abstract

A novel optical fiber [comblike dispersion-profiled fiber (CDPF)] that consists of a chain of alternating segments of standard telecommunication fiber and dispersion-shifted fiber is proposed for the generation of a soliton pulse train based on nonlinear transformation of an optical beat signal. A totally integrated all-optical fiber source of a 59.1-GHz train of 2.2-ps solitons is demonstrated with a CDPF. For a beat signal generator we use a dual-frequency erbium fiber laser incorporating fiber grating reflectors that provides 16-kHz linewidths and a low phase noise of optical beating (<5 × 10−5). Significant suppression of stimulated Brillouin scattering, which is essential for this technique, is achieved in the CDPF.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Hasegawa, F. D. Tappert, Appl. Phys. Lett. 23, 142 (1973).
    [CrossRef]
  2. V. I. Karpman, V. V. Solov’ev, Physica D 3, 487 (1981).
    [CrossRef]
  3. L. F. Mollenauer, S. G. Evangelides, H. A. Haus, IEEE J. Lightwave Technol. 9, 194 (1991).
    [CrossRef]
  4. A. Hasegawa, Y. Kodama, Opt. Lett. 15, 1443 (1990).
    [CrossRef] [PubMed]
  5. A. Hasegawa, Y. Kodama, Opt. Lett. 16, 1385 (1991).
    [CrossRef] [PubMed]
  6. P. V. Mamyshev, S. V. Chernikov, E. M. Dianov, IEEE J. Quantum Electron. 27, 2347 (1991).
    [CrossRef]
  7. S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, E. M. Dianov, Electron. Lett. 28, 931 (1992).
    [CrossRef]
  8. S. V. Chernikov, D. J. Richardson, R. I. Laming, E. M. Dianov, D. N. Payne, Electron. Lett. 28, 1210 (1992).
    [CrossRef]
  9. R. W. Tkach, A. R. Chraplyvy, R. M. Derosier, Electron. Lett. 22, 1011 (1986).
    [CrossRef]
  10. S. V. Chernikov, J. R. Taylor, R. Kashyap, Opt. Lett. 18, 2023 (1993).
    [CrossRef] [PubMed]
  11. S. V. Chernikov, J. R. Taylor, R. Kashyap, Electron. Lett. 29, 1788 (1993).
    [CrossRef]

1993 (2)

S. V. Chernikov, J. R. Taylor, R. Kashyap, Electron. Lett. 29, 1788 (1993).
[CrossRef]

S. V. Chernikov, J. R. Taylor, R. Kashyap, Opt. Lett. 18, 2023 (1993).
[CrossRef] [PubMed]

1992 (2)

S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, E. M. Dianov, Electron. Lett. 28, 931 (1992).
[CrossRef]

S. V. Chernikov, D. J. Richardson, R. I. Laming, E. M. Dianov, D. N. Payne, Electron. Lett. 28, 1210 (1992).
[CrossRef]

1991 (3)

L. F. Mollenauer, S. G. Evangelides, H. A. Haus, IEEE J. Lightwave Technol. 9, 194 (1991).
[CrossRef]

P. V. Mamyshev, S. V. Chernikov, E. M. Dianov, IEEE J. Quantum Electron. 27, 2347 (1991).
[CrossRef]

A. Hasegawa, Y. Kodama, Opt. Lett. 16, 1385 (1991).
[CrossRef] [PubMed]

1990 (1)

1986 (1)

R. W. Tkach, A. R. Chraplyvy, R. M. Derosier, Electron. Lett. 22, 1011 (1986).
[CrossRef]

1981 (1)

V. I. Karpman, V. V. Solov’ev, Physica D 3, 487 (1981).
[CrossRef]

1973 (1)

A. Hasegawa, F. D. Tappert, Appl. Phys. Lett. 23, 142 (1973).
[CrossRef]

Chernikov, S. V.

S. V. Chernikov, J. R. Taylor, R. Kashyap, Opt. Lett. 18, 2023 (1993).
[CrossRef] [PubMed]

S. V. Chernikov, J. R. Taylor, R. Kashyap, Electron. Lett. 29, 1788 (1993).
[CrossRef]

S. V. Chernikov, D. J. Richardson, R. I. Laming, E. M. Dianov, D. N. Payne, Electron. Lett. 28, 1210 (1992).
[CrossRef]

S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, E. M. Dianov, Electron. Lett. 28, 931 (1992).
[CrossRef]

P. V. Mamyshev, S. V. Chernikov, E. M. Dianov, IEEE J. Quantum Electron. 27, 2347 (1991).
[CrossRef]

Chraplyvy, A. R.

R. W. Tkach, A. R. Chraplyvy, R. M. Derosier, Electron. Lett. 22, 1011 (1986).
[CrossRef]

Derosier, R. M.

R. W. Tkach, A. R. Chraplyvy, R. M. Derosier, Electron. Lett. 22, 1011 (1986).
[CrossRef]

Dianov, E. M.

S. V. Chernikov, D. J. Richardson, R. I. Laming, E. M. Dianov, D. N. Payne, Electron. Lett. 28, 1210 (1992).
[CrossRef]

S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, E. M. Dianov, Electron. Lett. 28, 931 (1992).
[CrossRef]

P. V. Mamyshev, S. V. Chernikov, E. M. Dianov, IEEE J. Quantum Electron. 27, 2347 (1991).
[CrossRef]

Evangelides, S. G.

L. F. Mollenauer, S. G. Evangelides, H. A. Haus, IEEE J. Lightwave Technol. 9, 194 (1991).
[CrossRef]

Hasegawa, A.

Haus, H. A.

L. F. Mollenauer, S. G. Evangelides, H. A. Haus, IEEE J. Lightwave Technol. 9, 194 (1991).
[CrossRef]

Karpman, V. I.

V. I. Karpman, V. V. Solov’ev, Physica D 3, 487 (1981).
[CrossRef]

Kashyap, R.

S. V. Chernikov, J. R. Taylor, R. Kashyap, Opt. Lett. 18, 2023 (1993).
[CrossRef] [PubMed]

S. V. Chernikov, J. R. Taylor, R. Kashyap, Electron. Lett. 29, 1788 (1993).
[CrossRef]

Kodama, Y.

Laming, R. I.

S. V. Chernikov, D. J. Richardson, R. I. Laming, E. M. Dianov, D. N. Payne, Electron. Lett. 28, 1210 (1992).
[CrossRef]

Mamyshev, P. V.

S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, E. M. Dianov, Electron. Lett. 28, 931 (1992).
[CrossRef]

P. V. Mamyshev, S. V. Chernikov, E. M. Dianov, IEEE J. Quantum Electron. 27, 2347 (1991).
[CrossRef]

Mollenauer, L. F.

L. F. Mollenauer, S. G. Evangelides, H. A. Haus, IEEE J. Lightwave Technol. 9, 194 (1991).
[CrossRef]

Payne, D. N.

S. V. Chernikov, D. J. Richardson, R. I. Laming, E. M. Dianov, D. N. Payne, Electron. Lett. 28, 1210 (1992).
[CrossRef]

Richardson, D. J.

S. V. Chernikov, D. J. Richardson, R. I. Laming, E. M. Dianov, D. N. Payne, Electron. Lett. 28, 1210 (1992).
[CrossRef]

Solov’ev, V. V.

V. I. Karpman, V. V. Solov’ev, Physica D 3, 487 (1981).
[CrossRef]

Tappert, F. D.

A. Hasegawa, F. D. Tappert, Appl. Phys. Lett. 23, 142 (1973).
[CrossRef]

Taylor, J. R.

S. V. Chernikov, J. R. Taylor, R. Kashyap, Electron. Lett. 29, 1788 (1993).
[CrossRef]

S. V. Chernikov, J. R. Taylor, R. Kashyap, Opt. Lett. 18, 2023 (1993).
[CrossRef] [PubMed]

S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, E. M. Dianov, Electron. Lett. 28, 931 (1992).
[CrossRef]

Tkach, R. W.

R. W. Tkach, A. R. Chraplyvy, R. M. Derosier, Electron. Lett. 22, 1011 (1986).
[CrossRef]

Appl. Phys. Lett. (1)

A. Hasegawa, F. D. Tappert, Appl. Phys. Lett. 23, 142 (1973).
[CrossRef]

Electron. Lett. (4)

S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, E. M. Dianov, Electron. Lett. 28, 931 (1992).
[CrossRef]

S. V. Chernikov, D. J. Richardson, R. I. Laming, E. M. Dianov, D. N. Payne, Electron. Lett. 28, 1210 (1992).
[CrossRef]

R. W. Tkach, A. R. Chraplyvy, R. M. Derosier, Electron. Lett. 22, 1011 (1986).
[CrossRef]

S. V. Chernikov, J. R. Taylor, R. Kashyap, Electron. Lett. 29, 1788 (1993).
[CrossRef]

IEEE J. Lightwave Technol. (1)

L. F. Mollenauer, S. G. Evangelides, H. A. Haus, IEEE J. Lightwave Technol. 9, 194 (1991).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. V. Mamyshev, S. V. Chernikov, E. M. Dianov, IEEE J. Quantum Electron. 27, 2347 (1991).
[CrossRef]

Opt. Lett. (3)

Physica D (1)

V. I. Karpman, V. V. Solov’ev, Physica D 3, 487 (1981).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Results of numerical simulation [Eq. (1)] of a beat signal transformation into a train of solitonlike pulses in a CDPF. (a) The intensity of the input beat signal E2(0, t) = sin2(πt/2) (dashed curve) and resulting pulse train (solid curve). (b) The dynamics of peak power [(1), right axis], pulse duration (FVHM) [(2), left axis], the average dispersion profile of the CDPF [(3), right axis], and soliton number [(4), left axis], assuming aj = bj.

Fig. 2
Fig. 2

Integrated all-optical fiber configuration of the source of the soliton pulse train. The inset shows the dispersion profile of a CDPF designed and used in the experiment. WDM, wavelength-division multiplexer; EDFA, erbium-doped fiber amplifier; ISO, isolator.

Fig. 3
Fig. 3

Dependence of the SBS intensity on the input power for the 7.5-km CDPF (●), the first 2.2-km segment of the CDPF (▲), and a 2.2-km DSF (■).

Fig. 4
Fig. 4

(a) Second-harmonic generation (SHG) background-free autocorrelation traces on two time scales and (b) the spectrum of the generated soliton pulse train. The pulse train period is 16.9 ps, corresponding to a repetition rate of 59.1 GHz. The wavelength separation between spectral components is 0.47 nm. The dashed line in (a) is a computer-calculated fit of the experimental curve by an autocorrelation trace of a sech2-shaped pulse with a duration of ~2.2 ps.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

i E z = 1 2 β ( z ) 2 E t 2 + E 2 E ,
β ( z ) = { ,             z j < z < z j + a j d j / ,             z j + a j < z < z j + a j + b j ,             j = 1 , 2 , , N , 0 z j + 1 = z j + a j + b j .
β j ¯ = lim 0 [ 1 Δ z j z j z j + 1 β ( ξ ) d ξ ] = d j * b j a j .

Metrics