Abstract

We demonstrate the collapse of a continuum of transverse modes in a self-imaging ring resonator that is photorefractively pumped. The resulting localized mode has an arbitrary transverse location. The mode collapse results from placing saturable photorefractive gain and loss media in spatially conjugate resonator planes. The transverse position of the localized mode is unstable under small cavity misalignments, and it drifts across the transverse aperture while retaining its spatial form.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Saffman, D. Montgomery, D. Z. Anderson, in Nonlinear Dynamics in Optical Systems, Vol. 16 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD3M. Saffman, D. Montgomery, A. A. Zozulya, D. Z. Anderson, in Digest of Conference on Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D.C., 1993), paper ThD11.
  2. J. A. Arnaud, Appl. Opt. 8, 189 (1969).
    [CrossRef] [PubMed]
  3. B. Fischer, O. Werner, M. Horowitz, A. Lewis, Appl. Phys. Lett. 58, 2729 (1991).
    [CrossRef]
  4. V. Yu. Bazhenov, V. B. Taranenko, M. V. Vasnetsov, Proc. Soc. Photo-Opt. Instrum. Eng. 1806, 14 (1993).
  5. D. M. Lininger, P. J. Martin, D. Z. Anderson, Opt. Lett. 14, 697(1989); D. M. Lininger, D. D. Crouch, P. J. Martin, D. Z. Anderson, Opt. Commun. 76, 89 (1990).
    [CrossRef] [PubMed]
  6. C. Benkert, D. Z. Anderson, Phys. Rev. A 44, 4633 (1991).
    [CrossRef] [PubMed]
  7. A related drift-type instability in a Fabry–Perot resonator was predicted byM. Haelterman, G. Vitrant, J. Opt. Soc. Am. B 9, 1563 (1992).
    [CrossRef]
  8. The time constants were measured with the method described inA. Hermanns, C. Benkert, D. M. Lininger, D. Z. Anderson, IEEE J. Quantum Electron. 28, 750 (1992).
    [CrossRef]
  9. A. E. Siegmam, Lasers (University Science, Mill Valley, Calif., 1986), Sec. 4.5.

1993 (1)

V. Yu. Bazhenov, V. B. Taranenko, M. V. Vasnetsov, Proc. Soc. Photo-Opt. Instrum. Eng. 1806, 14 (1993).

1992 (2)

A related drift-type instability in a Fabry–Perot resonator was predicted byM. Haelterman, G. Vitrant, J. Opt. Soc. Am. B 9, 1563 (1992).
[CrossRef]

The time constants were measured with the method described inA. Hermanns, C. Benkert, D. M. Lininger, D. Z. Anderson, IEEE J. Quantum Electron. 28, 750 (1992).
[CrossRef]

1991 (2)

C. Benkert, D. Z. Anderson, Phys. Rev. A 44, 4633 (1991).
[CrossRef] [PubMed]

B. Fischer, O. Werner, M. Horowitz, A. Lewis, Appl. Phys. Lett. 58, 2729 (1991).
[CrossRef]

1989 (1)

1986 (1)

A. E. Siegmam, Lasers (University Science, Mill Valley, Calif., 1986), Sec. 4.5.

1969 (1)

Anderson, D. Z.

The time constants were measured with the method described inA. Hermanns, C. Benkert, D. M. Lininger, D. Z. Anderson, IEEE J. Quantum Electron. 28, 750 (1992).
[CrossRef]

C. Benkert, D. Z. Anderson, Phys. Rev. A 44, 4633 (1991).
[CrossRef] [PubMed]

D. M. Lininger, P. J. Martin, D. Z. Anderson, Opt. Lett. 14, 697(1989); D. M. Lininger, D. D. Crouch, P. J. Martin, D. Z. Anderson, Opt. Commun. 76, 89 (1990).
[CrossRef] [PubMed]

M. Saffman, D. Montgomery, D. Z. Anderson, in Nonlinear Dynamics in Optical Systems, Vol. 16 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD3M. Saffman, D. Montgomery, A. A. Zozulya, D. Z. Anderson, in Digest of Conference on Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D.C., 1993), paper ThD11.

Arnaud, J. A.

Bazhenov, V. Yu.

V. Yu. Bazhenov, V. B. Taranenko, M. V. Vasnetsov, Proc. Soc. Photo-Opt. Instrum. Eng. 1806, 14 (1993).

Benkert, C.

The time constants were measured with the method described inA. Hermanns, C. Benkert, D. M. Lininger, D. Z. Anderson, IEEE J. Quantum Electron. 28, 750 (1992).
[CrossRef]

C. Benkert, D. Z. Anderson, Phys. Rev. A 44, 4633 (1991).
[CrossRef] [PubMed]

Fischer, B.

B. Fischer, O. Werner, M. Horowitz, A. Lewis, Appl. Phys. Lett. 58, 2729 (1991).
[CrossRef]

Haelterman, M.

Hermanns, A.

The time constants were measured with the method described inA. Hermanns, C. Benkert, D. M. Lininger, D. Z. Anderson, IEEE J. Quantum Electron. 28, 750 (1992).
[CrossRef]

Horowitz, M.

B. Fischer, O. Werner, M. Horowitz, A. Lewis, Appl. Phys. Lett. 58, 2729 (1991).
[CrossRef]

Lewis, A.

B. Fischer, O. Werner, M. Horowitz, A. Lewis, Appl. Phys. Lett. 58, 2729 (1991).
[CrossRef]

Lininger, D. M.

The time constants were measured with the method described inA. Hermanns, C. Benkert, D. M. Lininger, D. Z. Anderson, IEEE J. Quantum Electron. 28, 750 (1992).
[CrossRef]

D. M. Lininger, P. J. Martin, D. Z. Anderson, Opt. Lett. 14, 697(1989); D. M. Lininger, D. D. Crouch, P. J. Martin, D. Z. Anderson, Opt. Commun. 76, 89 (1990).
[CrossRef] [PubMed]

Martin, P. J.

Montgomery, D.

M. Saffman, D. Montgomery, D. Z. Anderson, in Nonlinear Dynamics in Optical Systems, Vol. 16 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD3M. Saffman, D. Montgomery, A. A. Zozulya, D. Z. Anderson, in Digest of Conference on Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D.C., 1993), paper ThD11.

Saffman, M.

M. Saffman, D. Montgomery, D. Z. Anderson, in Nonlinear Dynamics in Optical Systems, Vol. 16 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD3M. Saffman, D. Montgomery, A. A. Zozulya, D. Z. Anderson, in Digest of Conference on Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D.C., 1993), paper ThD11.

Siegmam, A. E.

A. E. Siegmam, Lasers (University Science, Mill Valley, Calif., 1986), Sec. 4.5.

Taranenko, V. B.

V. Yu. Bazhenov, V. B. Taranenko, M. V. Vasnetsov, Proc. Soc. Photo-Opt. Instrum. Eng. 1806, 14 (1993).

Vasnetsov, M. V.

V. Yu. Bazhenov, V. B. Taranenko, M. V. Vasnetsov, Proc. Soc. Photo-Opt. Instrum. Eng. 1806, 14 (1993).

Vitrant, G.

Werner, O.

B. Fischer, O. Werner, M. Horowitz, A. Lewis, Appl. Phys. Lett. 58, 2729 (1991).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

B. Fischer, O. Werner, M. Horowitz, A. Lewis, Appl. Phys. Lett. 58, 2729 (1991).
[CrossRef]

IEEE J. Quantum Electron. (1)

The time constants were measured with the method described inA. Hermanns, C. Benkert, D. M. Lininger, D. Z. Anderson, IEEE J. Quantum Electron. 28, 750 (1992).
[CrossRef]

J. Opt. Soc. Am. B (1)

Lasers (1)

A. E. Siegmam, Lasers (University Science, Mill Valley, Calif., 1986), Sec. 4.5.

Opt. Lett. (1)

Phys. Rev. A (1)

C. Benkert, D. Z. Anderson, Phys. Rev. A 44, 4633 (1991).
[CrossRef] [PubMed]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

V. Yu. Bazhenov, V. B. Taranenko, M. V. Vasnetsov, Proc. Soc. Photo-Opt. Instrum. Eng. 1806, 14 (1993).

Other (1)

M. Saffman, D. Montgomery, D. Z. Anderson, in Nonlinear Dynamics in Optical Systems, Vol. 16 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD3M. Saffman, D. Montgomery, A. A. Zozulya, D. Z. Anderson, in Digest of Conference on Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D.C., 1993), paper ThD11.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Self-imaging ring resonator with photorefractive (BaTiO3) gain and loss. The gain and loss pumps are from a cw argon-ion laser, λ = 514 nm, and all beams are polarized in the plane of the figure. PBS, polarizing beam splitter. The gain pump beam has a Gaussian radius of wp ~ wc ≅ 130 μm, and the loss pump beam has a Gaussian radius of ~5.5 mm. The coupling and time constants of the gain and loss crystals are8 G = 4.9, τ0g = 4.2 s W/cm2, L = 2.1, τ0l = 0.061 s W/cm2, where the small-signal gain and loss are given by exp(G) and exp(−L), respectively. The focal lengths of the lenses are f1 = 100 mm, f2 = 150 mm, f3 = 30 mm; all lenses are confocally spaced; and the passive cavity reflectivity is R = exp(−C), where C = 3.4.

Fig. 2
Fig. 2

Experimental observation of transverse-mode collapse. The region within the dark circle corresponds to a resonator Fresnel number of 240.

Fig. 3
Fig. 3

Experimental observation of moving localized modes. The region within the outer dark circle corresponds to a resonator Fresnel number of 240.

Metrics