Abstract

We use coherent photon seeding to passively stabilize a synchronously mode-locked NaCl color-center laser. This results in the generation of essentially transform-limited picosecond pulses with average power levels of as high as 1.3 W in the 1.5–1.7-μm range. In addition, the pulse energy fluctuations are reduced by as much as 1 order of magnitude.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Beaud, J. Q. Bi, W. Hodel, H. P. Weber, Opt. Commun. 80, 31 (1990).
    [Crossref]
  2. D. S. Peter, P. Beaud, W. Hodel, H. P. Weber, Opt. Lett. 16, 405 (1991).
    [Crossref] [PubMed]
  3. J. Q. Bi, W. Hodel, H. P. Weber, Opt. Commun. 81, 408 (1991).
    [Crossref]
  4. G. H. C. New, Opt. Lett. 15, 1306 (1990).
    [Crossref] [PubMed]
  5. C. J. Hooker, J. M. D. Lister, I. N. Ross, Opt. Commun. 80, 375 (1991).
    [Crossref]
  6. D. Cotter, Opt. Commun. 83, 76 (1991).
    [Crossref]
  7. J. F. Pinto, E. Georgiou, C. R. Pollock, Opt. Lett. 11, 519 (1986).
    [Crossref] [PubMed]
  8. K. R. German, C. R. Pollock, Opt. Lett. 12, 474 (1987).
    [Crossref] [PubMed]
  9. We measured the fluorescence decay of the (F2+)H center in NaCl:OH− with a fast detector, using excitation with 100-ps-wide 1.06-μm excitation pulses (repetition rate, 1 kHz, obtained from a Nd:YAG regenerative amplifier). The system response was ~5 ns. The fluorescence decay time at 77-K crystal temperature was 75 ± 5 ns. This value is approximately a factor of 2 shorter than the value published in Ref. 7.
  10. K. Möllmann, F. Mitschke, W. Gellermann, Opt. Commun. 83, 177 (1991).
    [Crossref]
  11. L. F. Mollenauer, N. D. Viera, L. Szeto, Opt. Lett. 7, 414 (1982).
    [Crossref] [PubMed]
  12. K. Möllmann, W. Gellermann, H. Welling, in Digest of International Conference on Quantum Electronics (Optical Society of America, Washington, D.C., 1992), paper MoD4.

1991 (5)

D. S. Peter, P. Beaud, W. Hodel, H. P. Weber, Opt. Lett. 16, 405 (1991).
[Crossref] [PubMed]

J. Q. Bi, W. Hodel, H. P. Weber, Opt. Commun. 81, 408 (1991).
[Crossref]

C. J. Hooker, J. M. D. Lister, I. N. Ross, Opt. Commun. 80, 375 (1991).
[Crossref]

D. Cotter, Opt. Commun. 83, 76 (1991).
[Crossref]

K. Möllmann, F. Mitschke, W. Gellermann, Opt. Commun. 83, 177 (1991).
[Crossref]

1990 (2)

P. Beaud, J. Q. Bi, W. Hodel, H. P. Weber, Opt. Commun. 80, 31 (1990).
[Crossref]

G. H. C. New, Opt. Lett. 15, 1306 (1990).
[Crossref] [PubMed]

1987 (1)

1986 (1)

1982 (1)

Beaud, P.

D. S. Peter, P. Beaud, W. Hodel, H. P. Weber, Opt. Lett. 16, 405 (1991).
[Crossref] [PubMed]

P. Beaud, J. Q. Bi, W. Hodel, H. P. Weber, Opt. Commun. 80, 31 (1990).
[Crossref]

Bi, J. Q.

J. Q. Bi, W. Hodel, H. P. Weber, Opt. Commun. 81, 408 (1991).
[Crossref]

P. Beaud, J. Q. Bi, W. Hodel, H. P. Weber, Opt. Commun. 80, 31 (1990).
[Crossref]

Cotter, D.

D. Cotter, Opt. Commun. 83, 76 (1991).
[Crossref]

Gellermann, W.

K. Möllmann, F. Mitschke, W. Gellermann, Opt. Commun. 83, 177 (1991).
[Crossref]

K. Möllmann, W. Gellermann, H. Welling, in Digest of International Conference on Quantum Electronics (Optical Society of America, Washington, D.C., 1992), paper MoD4.

Georgiou, E.

German, K. R.

Hodel, W.

D. S. Peter, P. Beaud, W. Hodel, H. P. Weber, Opt. Lett. 16, 405 (1991).
[Crossref] [PubMed]

J. Q. Bi, W. Hodel, H. P. Weber, Opt. Commun. 81, 408 (1991).
[Crossref]

P. Beaud, J. Q. Bi, W. Hodel, H. P. Weber, Opt. Commun. 80, 31 (1990).
[Crossref]

Hooker, C. J.

C. J. Hooker, J. M. D. Lister, I. N. Ross, Opt. Commun. 80, 375 (1991).
[Crossref]

Lister, J. M. D.

C. J. Hooker, J. M. D. Lister, I. N. Ross, Opt. Commun. 80, 375 (1991).
[Crossref]

Mitschke, F.

K. Möllmann, F. Mitschke, W. Gellermann, Opt. Commun. 83, 177 (1991).
[Crossref]

Mollenauer, L. F.

Möllmann, K.

K. Möllmann, F. Mitschke, W. Gellermann, Opt. Commun. 83, 177 (1991).
[Crossref]

K. Möllmann, W. Gellermann, H. Welling, in Digest of International Conference on Quantum Electronics (Optical Society of America, Washington, D.C., 1992), paper MoD4.

New, G. H. C.

Peter, D. S.

Pinto, J. F.

Pollock, C. R.

Ross, I. N.

C. J. Hooker, J. M. D. Lister, I. N. Ross, Opt. Commun. 80, 375 (1991).
[Crossref]

Szeto, L.

Viera, N. D.

Weber, H. P.

J. Q. Bi, W. Hodel, H. P. Weber, Opt. Commun. 81, 408 (1991).
[Crossref]

D. S. Peter, P. Beaud, W. Hodel, H. P. Weber, Opt. Lett. 16, 405 (1991).
[Crossref] [PubMed]

P. Beaud, J. Q. Bi, W. Hodel, H. P. Weber, Opt. Commun. 80, 31 (1990).
[Crossref]

Welling, H.

K. Möllmann, W. Gellermann, H. Welling, in Digest of International Conference on Quantum Electronics (Optical Society of America, Washington, D.C., 1992), paper MoD4.

Opt. Commun. (5)

P. Beaud, J. Q. Bi, W. Hodel, H. P. Weber, Opt. Commun. 80, 31 (1990).
[Crossref]

J. Q. Bi, W. Hodel, H. P. Weber, Opt. Commun. 81, 408 (1991).
[Crossref]

C. J. Hooker, J. M. D. Lister, I. N. Ross, Opt. Commun. 80, 375 (1991).
[Crossref]

D. Cotter, Opt. Commun. 83, 76 (1991).
[Crossref]

K. Möllmann, F. Mitschke, W. Gellermann, Opt. Commun. 83, 177 (1991).
[Crossref]

Opt. Lett. (5)

Other (2)

We measured the fluorescence decay of the (F2+)H center in NaCl:OH− with a fast detector, using excitation with 100-ps-wide 1.06-μm excitation pulses (repetition rate, 1 kHz, obtained from a Nd:YAG regenerative amplifier). The system response was ~5 ns. The fluorescence decay time at 77-K crystal temperature was 75 ± 5 ns. This value is approximately a factor of 2 shorter than the value published in Ref. 7.

K. Möllmann, W. Gellermann, H. Welling, in Digest of International Conference on Quantum Electronics (Optical Society of America, Washington, D.C., 1992), paper MoD4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Sequence of autocorrelation traces for a synchronously mode-locked NaCl laser (a) without and (b) with feedback from control cavity. Feedback arrives in the crystal before the laser pulse. CPS from the control cavity eliminates the coherence peak of sychronously mode-locked laser pulse shapes.

Fig. 3
Fig. 3

Autocorrelation traces and spectra for the shortest pulse without and with CPS. With seeding the pulses become nearly transform limited.

Fig. 4
Fig. 4

Power spectra of the laser output without seeding (upper curve) and with seeding (lower curve), demonstrating the reduction of the noise band by as much as ~10 dB.

Metrics