Abstract

Cavity Fourier-transformed cross correlation measures the wavelength dispersion from the cross-correlation signal taken on spontaneous emission emerging from a cavity under test. This method provides a universal and quick way to detect femtosecond group delay. However, test cavity-length fluctuations have been hindering its application to femtosecond laser cavities. We introduce a dual-interferometer scheme in which one of the interferometers is dedicated to detecting length change in the test cavity, thereby enabling the influence of fluctuations to be nullified. This method is demonstrated on a Ti:Al2O3 laser as well as on a NaCl color-center laser.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Knox, N. M. Pearson, K. D. Li, C. A. Hirlimann, Opt. Lett. 13, 574 (1988).
    [CrossRef] [PubMed]
  2. K. Naganuma, K. Mogi, H. Yamada, Opt. Lett. 15, 393 (1990).
    [CrossRef] [PubMed]
  3. M. Beck, I. A. Walmsley, Opt. Lett. 15, 492 (1990).
    [CrossRef] [PubMed]
  4. R. L. Fork, O. E. Martinez, J. P. Gordon, Opt. Lett. 9, 150 (1984).
    [CrossRef] [PubMed]
  5. W. H. Knox, Opt. Lett. 17, 514 (1992).
    [CrossRef] [PubMed]
  6. W. H. Knox, J. P. Gordon, J. Opt. Soc. Am. B 10, 2071 (1993).
    [CrossRef]
  7. K. Naganuma, Appl. Phys. Lett. 64, 261 (1994).
    [CrossRef]
  8. M. J. Downs, K. W. Raine, Precis. Eng. 1, 85 (1979).
    [CrossRef]
  9. K. Naganuma, K. Mogi, Opt. Lett. 16, 738 (1991).
    [CrossRef] [PubMed]
  10. E. P. Ippen, H. A. Haus, L. Y. Liu, J. Opt. Soc. Am. B 6, 1736 (1989).
    [CrossRef]
  11. G. Sucha, S. R. Bolton, D. S. Chemla, IEEE J. Quantum Electron. 28, 2163 (1992).
    [CrossRef]

1994 (1)

K. Naganuma, Appl. Phys. Lett. 64, 261 (1994).
[CrossRef]

1993 (1)

1992 (2)

G. Sucha, S. R. Bolton, D. S. Chemla, IEEE J. Quantum Electron. 28, 2163 (1992).
[CrossRef]

W. H. Knox, Opt. Lett. 17, 514 (1992).
[CrossRef] [PubMed]

1991 (1)

1990 (2)

1989 (1)

1988 (1)

1984 (1)

1979 (1)

M. J. Downs, K. W. Raine, Precis. Eng. 1, 85 (1979).
[CrossRef]

Beck, M.

Bolton, S. R.

G. Sucha, S. R. Bolton, D. S. Chemla, IEEE J. Quantum Electron. 28, 2163 (1992).
[CrossRef]

Chemla, D. S.

G. Sucha, S. R. Bolton, D. S. Chemla, IEEE J. Quantum Electron. 28, 2163 (1992).
[CrossRef]

Downs, M. J.

M. J. Downs, K. W. Raine, Precis. Eng. 1, 85 (1979).
[CrossRef]

Fork, R. L.

Gordon, J. P.

Haus, H. A.

Hirlimann, C. A.

Ippen, E. P.

Knox, W. H.

Li, K. D.

Liu, L. Y.

Martinez, O. E.

Mogi, K.

Naganuma, K.

Pearson, N. M.

Raine, K. W.

M. J. Downs, K. W. Raine, Precis. Eng. 1, 85 (1979).
[CrossRef]

Sucha, G.

G. Sucha, S. R. Bolton, D. S. Chemla, IEEE J. Quantum Electron. 28, 2163 (1992).
[CrossRef]

Walmsley, I. A.

Yamada, H.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Operation of the dual interferometer. Without feedback (FB) a change in cavity length results in a variation in one interferometer output (PD1; top left) as well as a cross-correlation signal shift in the other interferometer output (PD2; top right). When the PD1 output is fed to a mirror shared by both interferometers so that it is kept constant (bottom left) a cross-correlation signal can be obtained free from the unwanted shift (bottom right).

Fig. 2
Fig. 2

Schematic of the measurement apparatus. Displacement between mirrors M1 and M2 defines the time-delay axis for the correlation signal and is monitored by a third local interferometer with a He–Ne laser. For cross-correlation measurement both of the mirrors and the local interferometer are displaced from the zero-delay position by approximately the cavity length (L/2), whereas for interferogram measurements they are located near this position. BS’s, beam splitters; PBS, polarization beam splitter; PZT, piezoelectric transducer; SM, single-mode.

Fig. 3
Fig. 3

Measurement results for a Ti:sapphire laser cavity. (a) Correlation signals; because of intracavity dispersion, cross correlation S1(τ) is significantly broader than the interferogram S0(τ). (b) Group-delay and power-gain spectra; also shown is a previous measurement taken for the laser rod.

Fig. 4
Fig. 4

Measurement results for a femtosecond color-center laser cavity. (a) Correlation signals, (b) group-delay and power-gain spectra. Small dispersion in the femtosecond domain has been clearly detected.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S ˜ 1 ( ω ) = t RT ( ω ) exp ( - i ω T ) t bias ( ω ) U ( ω ) ,
S ˜ 1 ( ω ) / S ˜ 1 ( ω ) = t RT ( ω ) exp ( - i ω T ) .
τ RT ( ω ) = d ϕ ( ω ) / d ω + T

Metrics