Abstract

The experimentally measured timing jitter of a self-mode-locked Ti:sapphire laser is compared with the theoretically predicted quantum limit. Timing jitter figures of 150 fs (100–500 Hz) and 80 fs (500–5000 Hz), which approach the quantum limit, have been achieved by use of an improved cavity phase-locking technique.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. W. Rodwell, D. M. Bloom, K. W. Weingarten, IEEE J. Quantum Electron. 25, 817 (1989).
    [CrossRef]
  2. D. von der Linde, Appl. Phys. B 39, 201 (1986).
    [CrossRef]
  3. U. Keller, K. D. Li, M. J. Rodwell, D. M. Bloom, IEEE J. Quantum Electron. 25, 280 (1989).
    [CrossRef]
  4. A. Finch, X. Zhu, P. N. Kean, W. Sibbett, IEEE J. Quantum Electron. 26, 1115 (1990).
    [CrossRef]
  5. U. Keller, C. E. Soccolich, G. Sucha, M. N. Islam, M. Wegener, Opt. Lett. 15, 974 (1990).
    [CrossRef] [PubMed]
  6. J. Son, J. V. Rudd, J. F. Whitaker, Opt. Lett. 17, 733 (1992).
    [CrossRef] [PubMed]
  7. D. R. Hjelme, A. R. Mickelson, IEEE J. Quantum Electron. 28, 1594 (1992).
    [CrossRef]
  8. H. A. Haus, A. Mecozzi, IEEE J. Quantum Electron. 29, 983 (1993).
    [CrossRef]
  9. H. A. Haus, J. G. Fujimoto, E. P. Ippen, J. Opt. Soc. Am. B 8, 2068 (1991).
    [CrossRef]
  10. D. R. Walker, D. W. Crust, W. E. Sleat, W. Sibbett, IEEE J. Quantum Electron. 28, 289 (1992).
    [CrossRef]
  11. D. E. Spence, J. M. Evans, W. E. Sleat, W. Sibbett, Opt. Lett. 16, 1762 (1991).
    [CrossRef] [PubMed]
  12. R. L. Fork, O. E. Martinez, J. P. Gordon, Opt. Lett. 9, 150 (1984).
    [CrossRef] [PubMed]

1993 (1)

H. A. Haus, A. Mecozzi, IEEE J. Quantum Electron. 29, 983 (1993).
[CrossRef]

1992 (3)

J. Son, J. V. Rudd, J. F. Whitaker, Opt. Lett. 17, 733 (1992).
[CrossRef] [PubMed]

D. R. Hjelme, A. R. Mickelson, IEEE J. Quantum Electron. 28, 1594 (1992).
[CrossRef]

D. R. Walker, D. W. Crust, W. E. Sleat, W. Sibbett, IEEE J. Quantum Electron. 28, 289 (1992).
[CrossRef]

1991 (2)

1990 (2)

A. Finch, X. Zhu, P. N. Kean, W. Sibbett, IEEE J. Quantum Electron. 26, 1115 (1990).
[CrossRef]

U. Keller, C. E. Soccolich, G. Sucha, M. N. Islam, M. Wegener, Opt. Lett. 15, 974 (1990).
[CrossRef] [PubMed]

1989 (2)

M. J. W. Rodwell, D. M. Bloom, K. W. Weingarten, IEEE J. Quantum Electron. 25, 817 (1989).
[CrossRef]

U. Keller, K. D. Li, M. J. Rodwell, D. M. Bloom, IEEE J. Quantum Electron. 25, 280 (1989).
[CrossRef]

1986 (1)

D. von der Linde, Appl. Phys. B 39, 201 (1986).
[CrossRef]

1984 (1)

Bloom, D. M.

M. J. W. Rodwell, D. M. Bloom, K. W. Weingarten, IEEE J. Quantum Electron. 25, 817 (1989).
[CrossRef]

U. Keller, K. D. Li, M. J. Rodwell, D. M. Bloom, IEEE J. Quantum Electron. 25, 280 (1989).
[CrossRef]

Crust, D. W.

D. R. Walker, D. W. Crust, W. E. Sleat, W. Sibbett, IEEE J. Quantum Electron. 28, 289 (1992).
[CrossRef]

Evans, J. M.

Finch, A.

A. Finch, X. Zhu, P. N. Kean, W. Sibbett, IEEE J. Quantum Electron. 26, 1115 (1990).
[CrossRef]

Fork, R. L.

Fujimoto, J. G.

Gordon, J. P.

Haus, H. A.

H. A. Haus, A. Mecozzi, IEEE J. Quantum Electron. 29, 983 (1993).
[CrossRef]

H. A. Haus, J. G. Fujimoto, E. P. Ippen, J. Opt. Soc. Am. B 8, 2068 (1991).
[CrossRef]

Hjelme, D. R.

D. R. Hjelme, A. R. Mickelson, IEEE J. Quantum Electron. 28, 1594 (1992).
[CrossRef]

Ippen, E. P.

Islam, M. N.

Kean, P. N.

A. Finch, X. Zhu, P. N. Kean, W. Sibbett, IEEE J. Quantum Electron. 26, 1115 (1990).
[CrossRef]

Keller, U.

U. Keller, C. E. Soccolich, G. Sucha, M. N. Islam, M. Wegener, Opt. Lett. 15, 974 (1990).
[CrossRef] [PubMed]

U. Keller, K. D. Li, M. J. Rodwell, D. M. Bloom, IEEE J. Quantum Electron. 25, 280 (1989).
[CrossRef]

Li, K. D.

U. Keller, K. D. Li, M. J. Rodwell, D. M. Bloom, IEEE J. Quantum Electron. 25, 280 (1989).
[CrossRef]

Martinez, O. E.

Mecozzi, A.

H. A. Haus, A. Mecozzi, IEEE J. Quantum Electron. 29, 983 (1993).
[CrossRef]

Mickelson, A. R.

D. R. Hjelme, A. R. Mickelson, IEEE J. Quantum Electron. 28, 1594 (1992).
[CrossRef]

Rodwell, M. J.

U. Keller, K. D. Li, M. J. Rodwell, D. M. Bloom, IEEE J. Quantum Electron. 25, 280 (1989).
[CrossRef]

Rodwell, M. J. W.

M. J. W. Rodwell, D. M. Bloom, K. W. Weingarten, IEEE J. Quantum Electron. 25, 817 (1989).
[CrossRef]

Rudd, J. V.

Sibbett, W.

D. R. Walker, D. W. Crust, W. E. Sleat, W. Sibbett, IEEE J. Quantum Electron. 28, 289 (1992).
[CrossRef]

D. E. Spence, J. M. Evans, W. E. Sleat, W. Sibbett, Opt. Lett. 16, 1762 (1991).
[CrossRef] [PubMed]

A. Finch, X. Zhu, P. N. Kean, W. Sibbett, IEEE J. Quantum Electron. 26, 1115 (1990).
[CrossRef]

Sleat, W. E.

D. R. Walker, D. W. Crust, W. E. Sleat, W. Sibbett, IEEE J. Quantum Electron. 28, 289 (1992).
[CrossRef]

D. E. Spence, J. M. Evans, W. E. Sleat, W. Sibbett, Opt. Lett. 16, 1762 (1991).
[CrossRef] [PubMed]

Soccolich, C. E.

Son, J.

Spence, D. E.

Sucha, G.

von der Linde, D.

D. von der Linde, Appl. Phys. B 39, 201 (1986).
[CrossRef]

Walker, D. R.

D. R. Walker, D. W. Crust, W. E. Sleat, W. Sibbett, IEEE J. Quantum Electron. 28, 289 (1992).
[CrossRef]

Wegener, M.

Weingarten, K. W.

M. J. W. Rodwell, D. M. Bloom, K. W. Weingarten, IEEE J. Quantum Electron. 25, 817 (1989).
[CrossRef]

Whitaker, J. F.

Zhu, X.

A. Finch, X. Zhu, P. N. Kean, W. Sibbett, IEEE J. Quantum Electron. 26, 1115 (1990).
[CrossRef]

Appl. Phys. B (1)

D. von der Linde, Appl. Phys. B 39, 201 (1986).
[CrossRef]

IEEE J. Quantum Electron. (6)

U. Keller, K. D. Li, M. J. Rodwell, D. M. Bloom, IEEE J. Quantum Electron. 25, 280 (1989).
[CrossRef]

A. Finch, X. Zhu, P. N. Kean, W. Sibbett, IEEE J. Quantum Electron. 26, 1115 (1990).
[CrossRef]

D. R. Hjelme, A. R. Mickelson, IEEE J. Quantum Electron. 28, 1594 (1992).
[CrossRef]

H. A. Haus, A. Mecozzi, IEEE J. Quantum Electron. 29, 983 (1993).
[CrossRef]

D. R. Walker, D. W. Crust, W. E. Sleat, W. Sibbett, IEEE J. Quantum Electron. 28, 289 (1992).
[CrossRef]

M. J. W. Rodwell, D. M. Bloom, K. W. Weingarten, IEEE J. Quantum Electron. 25, 817 (1989).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Single-sideband phase-noise spectrum for the un-stabilized Ti:Al2O3 laser. The dashed curve shows the theoretical quantum limit predicted by Eq. (1).

Fig. 2
Fig. 2

Schematic of the active stabilization scheme.

Fig. 3
Fig. 3

Single-sideband phase-noise spectrum for the stabilized Ti:Al2O3 laser. The dashed curve shows the theoretical quantum limit predicted by Eq. (1) in the absence of active stabilization, whereas the smooth solid curve shows the theoretical quantum limit predicted by Eq. (5) in the presence of active stabilization.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S J ( f ) = Ω 0 2 ( 4 D 2 T R 2 { D p ( 2 π f ) 2 [ ( 2 π f ) 2 + τ p - 2 ] } + D t ( 2 π f ) 2 ) ,
τ p = 3 T r Ω g 2 τ 2 4 g ,
D p = 2 3 w 0 τ 2 θ 2 g T R h ν ,
D t = π 2 τ 2 3 w 0 θ 2 g T R h ν .
S J ( f ) = Ω 0 2 ( 4 D 2 T R 2 { D p [ ( 2 π f ) 2 + τ s - 2 ] [ ( 2 π f ) 2 + τ p - 2 ] } + D t ( 2 π f ) 2 + τ s - 2 ) ,
σ j = T R 2 π [ 2 f 1 f h 10 S J ( f ) / 10 d f ] 1 / 2 .

Metrics