Abstract

We report high-power and single-frequency operation of a continuous-wave singly resonant potassium titanyl phosphate (KTiOPO4) optical parametric oscillator in a ring-cavity configuration. The ring singly resonant optical parametric oscillator threshold is 4.3 W. When the oscillator is pumped by 6.7 W of 532-nm radiation from an 11.2-W single-frequency resonantly doubled Nd:YAG laser, 1.9 W of single-axial-mode output is generated at the idler wavelength of 1039 nm.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. T. Yang, R. C. Eckardt, R. L. Byer, Opt. Lett. 18, 971 (1993).
    [Crossref] [PubMed]
  2. J. Falk, IEEE J. Quantum Electron. QE-7, 230 (1971).
    [Crossref]
  3. S. T. Yang, R. C. Eckardt, R. L. Byer, J. Opt. Soc. Am. B 10, 1684 (1993).
    [Crossref]
  4. C. D. Nabors, A. D. Farinas, T. Day, S. T. Yang, E. K. Gustafson, R. L. Byer, Opt. Lett. 14, 1189 (1989).
    [Crossref] [PubMed]
  5. S. T. Yang, C. C. Pohalski, E. K. Gustafson, R. L. Byer, R. S. Feigelson, R. J. Raymakers, R. K. Route, Opt. Lett. 16, 1493 (1991).
    [Crossref] [PubMed]
  6. J. D. Bierlein, H. Vanherzeele, J. Opt. Soc. Am. B 6, 622 (1989).
    [Crossref]
  7. K. Kato, M. Masutani, Opt. Lett. 17, 178 (1992).
    [Crossref] [PubMed]

1993 (2)

1992 (1)

1991 (1)

1989 (2)

1971 (1)

J. Falk, IEEE J. Quantum Electron. QE-7, 230 (1971).
[Crossref]

Bierlein, J. D.

Byer, R. L.

Day, T.

Eckardt, R. C.

Falk, J.

J. Falk, IEEE J. Quantum Electron. QE-7, 230 (1971).
[Crossref]

Farinas, A. D.

Feigelson, R. S.

Gustafson, E. K.

Kato, K.

Masutani, M.

Nabors, C. D.

Pohalski, C. C.

Raymakers, R. J.

Route, R. K.

Vanherzeele, H.

Yang, S. T.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Ring-cavity SRO experimental setup. The pump source consists of a single-frequency injection-locked Nd:YAG laser that is resonantly doubled to its second harmonic. The ring-cavity SRO is in a bow-tie configuration. Curved mirrors Ml and M2 are highly reflecting at both the signal and the idler wavelengths, whereas flat mirrors M3 and M4 are highly transmitting at the idler wavelength (T = 91%) and highly reflecting at the signal wavelength (R = 99.85%). The KTP crystal used is 1.5 cm long.

Fig. 2
Fig. 2

Ring-cavity SRO idler output measured after mirror M3 and pump transmission versus input pump power. The maximum TEM00 idler power achieved was 1.9 ± 0.1 W with 6.7 W of pump input power. The corresponding pump depletion was 64 ± 3%. The solid line is a linear fit to the idler output power. From the fit, the SRO slope efficiency is 77.8%.

Fig. 3
Fig. 3

Ring-cavity SRO output spectrum as observed with a 300-MHz free spectral range scanning Fabry–Perot interferometer. The two different peaks correspond to the signal and the idler waves.

Fig. 4
Fig. 4

SRO output power monitored over 100-s time interval. The SRO output remained at one single axial mode for 80 s before a mode hop occurred, as indicated by the sudden change in output power. The dropout in the graph is intentional: the SRO beam was blocked momentarily to establish the baseline.

Metrics