Abstract

The deexcitation of guided modes in a thin-film planar dielectric waveguide is considered. On the film–cover interface is etched an ordinary diffraction grating whose wave number is such that one radiation beam in the substrate alone is generated. For a specified radiation direction the p-polarized radiation vanishes selectively. This phenomenon is used in the development of a polarizer whose output is predominantly in the p polarization. The sensitivity of the performance of the polarizer to small deviations in the design parameters is also investigated.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. P. Varnham, D. N. Payne, R. D. Birch, E. J. Tarbox, Electron. Lett. 19, 679 (1983).
    [CrossRef]
  2. P. G. Suchoski, T. K. Findakly, F. J Leonberger, Opt. Lett. 13, 172 (1988).
    [CrossRef] [PubMed]
  3. M. N. Zervas, I. P. Giles, Opt. Lett. 15, 513 (1990).
    [CrossRef] [PubMed]
  4. M. A. Sletten, S. R. Seshadri, J. Appl. Phys. 70, 574 (1991).
    [CrossRef]
  5. K. Baba, M. Miyagi, Opt. Lett. 16, 964 (1991).
    [CrossRef] [PubMed]
  6. M. J. Bloemer, J. W. Haus, Opt. Lett. 17, 598 (1992).
    [CrossRef] [PubMed]
  7. T. Tamir, Integrated Optics, 2nd ed. (Springer-Verlag, New York, 1979), Chap. 3, pp. 93–101.
  8. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980), p. 43.

1992 (1)

1991 (2)

M. A. Sletten, S. R. Seshadri, J. Appl. Phys. 70, 574 (1991).
[CrossRef]

K. Baba, M. Miyagi, Opt. Lett. 16, 964 (1991).
[CrossRef] [PubMed]

1990 (1)

1988 (1)

1983 (1)

M. P. Varnham, D. N. Payne, R. D. Birch, E. J. Tarbox, Electron. Lett. 19, 679 (1983).
[CrossRef]

Baba, K.

Birch, R. D.

M. P. Varnham, D. N. Payne, R. D. Birch, E. J. Tarbox, Electron. Lett. 19, 679 (1983).
[CrossRef]

Bloemer, M. J.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980), p. 43.

Findakly, T. K.

Giles, I. P.

Haus, J. W.

Leonberger, F. J

Miyagi, M.

Payne, D. N.

M. P. Varnham, D. N. Payne, R. D. Birch, E. J. Tarbox, Electron. Lett. 19, 679 (1983).
[CrossRef]

Seshadri, S. R.

M. A. Sletten, S. R. Seshadri, J. Appl. Phys. 70, 574 (1991).
[CrossRef]

Sletten, M. A.

M. A. Sletten, S. R. Seshadri, J. Appl. Phys. 70, 574 (1991).
[CrossRef]

Suchoski, P. G.

Tamir, T.

T. Tamir, Integrated Optics, 2nd ed. (Springer-Verlag, New York, 1979), Chap. 3, pp. 93–101.

Tarbox, E. J.

M. P. Varnham, D. N. Payne, R. D. Birch, E. J. Tarbox, Electron. Lett. 19, 679 (1983).
[CrossRef]

Varnham, M. P.

M. P. Varnham, D. N. Payne, R. D. Birch, E. J. Tarbox, Electron. Lett. 19, 679 (1983).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980), p. 43.

Zervas, M. N.

Electron. Lett. (1)

M. P. Varnham, D. N. Payne, R. D. Birch, E. J. Tarbox, Electron. Lett. 19, 679 (1983).
[CrossRef]

J. Appl. Phys. (1)

M. A. Sletten, S. R. Seshadri, J. Appl. Phys. 70, 574 (1991).
[CrossRef]

Opt. Lett. (4)

Other (2)

T. Tamir, Integrated Optics, 2nd ed. (Springer-Verlag, New York, 1979), Chap. 3, pp. 93–101.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980), p. 43.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Geometry of a dielectric film waveguide sandwiched between a cover and a substrate with a corrugated interface between the film and the cover.

Fig. 2
Fig. 2

EC and IL as functions of ω/ωd (curve a), 2a/2ad (curve b), and K/Kd (curve c).

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

F c 0 ( x , z ) = N 0 j A 0 j exp [ - α c j ( x - a ) ] exp ( i β j z )             for x > a ,
F f 0 ( x , z ) = N 0 j A 0 j cos [ k j ( x - a ) + ϕ c j ] cos ϕ c j exp ( i β j z )             for x > a ,
F s 0 ( x , z ) = N 0 j A 0 j cos ϕ s j cos ϕ c j ( - 1 ) ( j - 1 ) exp [ α s j ( x + a ) ] × exp ( i β j z )             for x < - a ,
k j = ( ω 2 f - β j 2 ) 1 / 2 ,
α ν j = ( β j 2 - ω 2 ν ) 1 / 2 ,             v = c , s .
4 k j a - 2 ϕ c j - 2 ϕ s j = 2 π ( j - 1 ) ,
tan ϕ ν j = α ˜ ν j / k ˜ j ,             v = c , s ,
N 0 j = [ 4 ω ˜ f cos 2 ϕ c j / β j w ( 2 a ) j ] 1 / 2 ,
( 2 a ) j = 2 a + 1 / q c j α c j + 1 / q s j α s j ,
q v j = 1 ,             q v j = ( 1 / f + 1 / v ) β j 2 / ω 2 - 1 ,
β j + ω ( c ) 1 / 2 < K < β j + ω ( s ) 1 / 2 .
F c 1 r ( x , z ) = A - 1 j exp [ - α - 1 c ( x - a ) ] exp [ i ( β j - K ) z ]             for x > a ,
F f 1 r ( x , z ) = { B - 1 j exp [ - i k - 1 f ( x - a ) ] + C - 1 j × exp [ i k - 1 f ( x + a ) ] } exp [ i ( β j - K ) z ]             for x < a ,
F s 1 r ( x , z ) = N 1 s D - 1 j r exp [ - i k - 1 s ( x + a ) ] exp [ i ( β j - K ) z ]             for x < - a ,
α - 1 c = [ ( β j - K ) 2 - ω 2 c ] 1 / 2 ,
k - 1 v = [ ω 2 v - ( β j - K ) 2 ] 1 / 2 ,             v = f , s .
N 1 s = ( 2 ω / w k ˜ - 1 s ) 1 / 2 ,
D - 1 j r = c s g A 0 j ,
c s g = 1 2 ( 1 + c s s ) A c N 0 j N 1 s ,
c s s = [ 1 + i k ˜ - 1 f k ˜ - 1 s tan ( 2 k - 1 f a - ϕ - 1 c ) ] / [ 1 - i k ˜ - 1 f k ˜ - 1 s tan ( 2 k - 1 f a - ϕ - 1 c ) ] ,
tan ϕ - 1 c = α ˜ - 1 c / k ˜ - 1 f ,
A c = i 2 a η c 1 ( f - c ) k ˜ - 1 s cos ϕ - 1 c cos ( 2 k - 1 f a - ϕ - 1 c ) B .
B = ω 2             for s polarization ,
B = α ˜ c j α ˜ - 1 c + β j ( β j - K ) / c f             for p polarization .
d d z A 0 j ( z ) = c g g A 0 j ( z ) ,
c g g + c g g * = - c s g c s g * .
- d d z A 0 j 2 = D - 1 j r 2 ,
T t = A 0 j ( z = z f ) 2 / A 0 j ( z = z b ) 2 = exp ( - c s g 2 L ) ,
K = β j + { ω 2 c / [ 1 - β j 2 c 2 f 2 ( β j 2 - ω 2 c ) ] } 1 / 2 .

Metrics