Abstract

We demonstrate a simple, effective technique for launching higher-order modes into a double-mode optical fiber by using an optical phase shifter at the input end. The suppression of the lowest-order mode was measured (but not limited) to be 27 dB.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. V. Sorin, B. Y. Kim, H. J. Shaw, Opt. Lett. 11, 581 (1986).
    [CrossRef] [PubMed]
  2. R. C. Youngquist, J. L. Brooks, H. J. Shaw, Opt. Lett. 9, 177 (1984).
    [CrossRef] [PubMed]
  3. C. D. Poole, C. D. Townsend, K. T. Nelson, J. Lightwave Technol. 9, 598 (1990), and references therein.
    [CrossRef]
  4. A. Kumar, R. K. Varshney, Opt. Lett. 14, 817 (1989).
    [CrossRef] [PubMed]
  5. C. D. Poole, J. M. Wiesenfeld, A. R. McCormick, K. T. Nelson, Opt. Lett. 17, 985 (1992).
    [CrossRef] [PubMed]
  6. R. H. Stolen, R. P. De Paula, Proc. IEEE 75, 1485 (1992).
  7. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), Chap. 12, pp. 248–263.
  8. D. Gloge, Appl. Opt. 10, 2252 (1971).
    [CrossRef] [PubMed]
  9. B. Y. Kim, J. N. Blake, S. Y. Huang, H. J. Shaw, Opt. Lett. 12, 729 (1987).
    [CrossRef] [PubMed]
  10. S. Y. Huang, J. N. Blake, B. Y. Kim, J. Lightwave Technol. 8, 23 (1990).
    [CrossRef]
  11. S. J. Garth, Appl. Opt. 28, 581 (1989).
    [CrossRef] [PubMed]
  12. F. Ouellette, IEEE J. Quantum Electron. 27, 796 (1991).
    [CrossRef]
  13. A. Yariv, Quantum Electronics, 2nd ed. (Wiley, New York, 1975), Chap. 3, p. 118.

1992

1991

F. Ouellette, IEEE J. Quantum Electron. 27, 796 (1991).
[CrossRef]

1990

S. Y. Huang, J. N. Blake, B. Y. Kim, J. Lightwave Technol. 8, 23 (1990).
[CrossRef]

C. D. Poole, C. D. Townsend, K. T. Nelson, J. Lightwave Technol. 9, 598 (1990), and references therein.
[CrossRef]

1989

1987

1986

1984

1971

Blake, J. N.

S. Y. Huang, J. N. Blake, B. Y. Kim, J. Lightwave Technol. 8, 23 (1990).
[CrossRef]

B. Y. Kim, J. N. Blake, S. Y. Huang, H. J. Shaw, Opt. Lett. 12, 729 (1987).
[CrossRef] [PubMed]

Brooks, J. L.

De Paula, R. P.

R. H. Stolen, R. P. De Paula, Proc. IEEE 75, 1485 (1992).

Garth, S. J.

Gloge, D.

Huang, S. Y.

S. Y. Huang, J. N. Blake, B. Y. Kim, J. Lightwave Technol. 8, 23 (1990).
[CrossRef]

B. Y. Kim, J. N. Blake, S. Y. Huang, H. J. Shaw, Opt. Lett. 12, 729 (1987).
[CrossRef] [PubMed]

Kim, B. Y.

Kumar, A.

Love, J. D.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), Chap. 12, pp. 248–263.

McCormick, A. R.

Nelson, K. T.

C. D. Poole, J. M. Wiesenfeld, A. R. McCormick, K. T. Nelson, Opt. Lett. 17, 985 (1992).
[CrossRef] [PubMed]

C. D. Poole, C. D. Townsend, K. T. Nelson, J. Lightwave Technol. 9, 598 (1990), and references therein.
[CrossRef]

Ouellette, F.

F. Ouellette, IEEE J. Quantum Electron. 27, 796 (1991).
[CrossRef]

Poole, C. D.

C. D. Poole, J. M. Wiesenfeld, A. R. McCormick, K. T. Nelson, Opt. Lett. 17, 985 (1992).
[CrossRef] [PubMed]

C. D. Poole, C. D. Townsend, K. T. Nelson, J. Lightwave Technol. 9, 598 (1990), and references therein.
[CrossRef]

Shaw, H. J.

Snyder, A. W.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), Chap. 12, pp. 248–263.

Sorin, W. V.

Stolen, R. H.

R. H. Stolen, R. P. De Paula, Proc. IEEE 75, 1485 (1992).

Townsend, C. D.

C. D. Poole, C. D. Townsend, K. T. Nelson, J. Lightwave Technol. 9, 598 (1990), and references therein.
[CrossRef]

Varshney, R. K.

Wiesenfeld, J. M.

Yariv, A.

A. Yariv, Quantum Electronics, 2nd ed. (Wiley, New York, 1975), Chap. 3, p. 118.

Youngquist, R. C.

Appl. Opt.

IEEE J. Quantum Electron.

F. Ouellette, IEEE J. Quantum Electron. 27, 796 (1991).
[CrossRef]

J. Lightwave Technol.

C. D. Poole, C. D. Townsend, K. T. Nelson, J. Lightwave Technol. 9, 598 (1990), and references therein.
[CrossRef]

S. Y. Huang, J. N. Blake, B. Y. Kim, J. Lightwave Technol. 8, 23 (1990).
[CrossRef]

Opt. Lett.

Proc. IEEE

R. H. Stolen, R. P. De Paula, Proc. IEEE 75, 1485 (1992).

Other

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), Chap. 12, pp. 248–263.

A. Yariv, Quantum Electronics, 2nd ed. (Wiley, New York, 1975), Chap. 3, p. 118.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Electric-field distributions of the first six modes in a weakly guided, cylindrically symmetric fiber. The arrows indicate the directions of the fields.

Fig. 2
Fig. 2

Electric-field distributions of the first four guided modes in an elliptical-core fiber. The arrows indicate the primary directions of the electric fields. The nodal lines for LP11,even modes are along the short axis (y axis) of the ellipse.

Fig. 3
Fig. 3

Simplified experimental setup. The phase shifter is made of two rectangular microscope glass slides, whose adjoining edges are along the short axis (y axis) of the elliptical fiber. One of the slides is rotatable about the x axis so that the optical path can be changed.

Fig. 4
Fig. 4

Measured intensity distribution after the second microscope objective when the incident beam passes through one glass slide only. The solid curve is a fit to a Gaussian function. The absolute transmittance, after reflection correction, is 38%.

Fig. 5
Fig. 5

Measured intensity distribution after the second microscope objected when the incident beam passes through both slides with the adjoining edges bisecting the beam cross section. The solid curve is a fit to the product of a Gaussian function and the first-order Hermite polynomial. The absolute transmittance, after reflection correction, is 8.4%.

Metrics