Abstract

Photoinduced second-harmonic generation in silica fibers doped with Er3+, Sm3+, and Tb3+ has been investigated. Er3+-doped fibers have been found to tune a χ(2) grating easily to the mode structure of the laser radiation, whereas Sm3+-doped fibers have been found to possess the greatest resistance to χ(2) grating erasure by radiation at 532 nm. From the beginning of the preparation processes, the third harmonic at 355 nm is registered in all the fibers.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Krol, J. R. Simpson, Opt. Lett. 16, 1650 (1991).
    [CrossRef] [PubMed]
  2. N. M. Lawandy, J. P. Bernardin, G. Demondy, R. L. McDonald, Electron. Lett. 27, 1264 (1991).
    [CrossRef]
  3. T. J. Driscol, N. M. Lawandy, A. Killian, L. Rienhart, T. F. Morse, Electron. Lett. 27, 1729 (1991).
    [CrossRef]
  4. J. L. Merz, P. S. Pershan, Phys. Rev. 162, 217 (1967); L. S. Kornienko, A. O. Rybaltovsky, Fiz. Tvyord. Tela 13, 1919 (1971).
    [CrossRef]
  5. S. K. Batygov, Spectroscopy of Crystals (Nauka, Moscow, 1970), pp. 167–169 (in Russian).
  6. U. Osterberg, Electron. Lett. 26, 103 (1990).
    [CrossRef]

1991 (3)

D. M. Krol, J. R. Simpson, Opt. Lett. 16, 1650 (1991).
[CrossRef] [PubMed]

N. M. Lawandy, J. P. Bernardin, G. Demondy, R. L. McDonald, Electron. Lett. 27, 1264 (1991).
[CrossRef]

T. J. Driscol, N. M. Lawandy, A. Killian, L. Rienhart, T. F. Morse, Electron. Lett. 27, 1729 (1991).
[CrossRef]

1990 (1)

U. Osterberg, Electron. Lett. 26, 103 (1990).
[CrossRef]

1967 (1)

J. L. Merz, P. S. Pershan, Phys. Rev. 162, 217 (1967); L. S. Kornienko, A. O. Rybaltovsky, Fiz. Tvyord. Tela 13, 1919 (1971).
[CrossRef]

Batygov, S. K.

S. K. Batygov, Spectroscopy of Crystals (Nauka, Moscow, 1970), pp. 167–169 (in Russian).

Bernardin, J. P.

N. M. Lawandy, J. P. Bernardin, G. Demondy, R. L. McDonald, Electron. Lett. 27, 1264 (1991).
[CrossRef]

Demondy, G.

N. M. Lawandy, J. P. Bernardin, G. Demondy, R. L. McDonald, Electron. Lett. 27, 1264 (1991).
[CrossRef]

Driscol, T. J.

T. J. Driscol, N. M. Lawandy, A. Killian, L. Rienhart, T. F. Morse, Electron. Lett. 27, 1729 (1991).
[CrossRef]

Killian, A.

T. J. Driscol, N. M. Lawandy, A. Killian, L. Rienhart, T. F. Morse, Electron. Lett. 27, 1729 (1991).
[CrossRef]

Krol, D. M.

Lawandy, N. M.

N. M. Lawandy, J. P. Bernardin, G. Demondy, R. L. McDonald, Electron. Lett. 27, 1264 (1991).
[CrossRef]

T. J. Driscol, N. M. Lawandy, A. Killian, L. Rienhart, T. F. Morse, Electron. Lett. 27, 1729 (1991).
[CrossRef]

McDonald, R. L.

N. M. Lawandy, J. P. Bernardin, G. Demondy, R. L. McDonald, Electron. Lett. 27, 1264 (1991).
[CrossRef]

Merz, J. L.

J. L. Merz, P. S. Pershan, Phys. Rev. 162, 217 (1967); L. S. Kornienko, A. O. Rybaltovsky, Fiz. Tvyord. Tela 13, 1919 (1971).
[CrossRef]

Morse, T. F.

T. J. Driscol, N. M. Lawandy, A. Killian, L. Rienhart, T. F. Morse, Electron. Lett. 27, 1729 (1991).
[CrossRef]

Osterberg, U.

U. Osterberg, Electron. Lett. 26, 103 (1990).
[CrossRef]

Pershan, P. S.

J. L. Merz, P. S. Pershan, Phys. Rev. 162, 217 (1967); L. S. Kornienko, A. O. Rybaltovsky, Fiz. Tvyord. Tela 13, 1919 (1971).
[CrossRef]

Rienhart, L.

T. J. Driscol, N. M. Lawandy, A. Killian, L. Rienhart, T. F. Morse, Electron. Lett. 27, 1729 (1991).
[CrossRef]

Simpson, J. R.

Electron. Lett. (3)

N. M. Lawandy, J. P. Bernardin, G. Demondy, R. L. McDonald, Electron. Lett. 27, 1264 (1991).
[CrossRef]

T. J. Driscol, N. M. Lawandy, A. Killian, L. Rienhart, T. F. Morse, Electron. Lett. 27, 1729 (1991).
[CrossRef]

U. Osterberg, Electron. Lett. 26, 103 (1990).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (1)

J. L. Merz, P. S. Pershan, Phys. Rev. 162, 217 (1967); L. S. Kornienko, A. O. Rybaltovsky, Fiz. Tvyord. Tela 13, 1919 (1971).
[CrossRef]

Other (1)

S. K. Batygov, Spectroscopy of Crystals (Nauka, Moscow, 1970), pp. 167–169 (in Russian).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Temporal growth of photoinduced SH ( I 2 s ) for aluminosilicate fibers doped with Er3+ (+), Sm3+ (○), and Tb3+ (□) and for a germanosilicate fiber without rare-earth-ion doping (×). The χ(2) grating preparation conditions were the same. The in-fiber average intensity of the IR radiation was 100 mW, and that of the seeding SH radiation was 1 mW.

Fig. 2
Fig. 2

Temporal evolution of photoinduced SH for an Er3+-doped germanosilicate fiber (curve 1) and for a germanosilicate fiber without rare-earth-ion doping (curves 2 and 3) when the fibers were irradiated only by the IR radiation I1. A weak photoinduced SH with an efficiency I 2 s / I 1 = 4 × 10 - 6 had been previously prepared with a seeding SH radiation. Curves 1 and 3, initial photoinduced SH in a higher-order mode; curve 2, initial photoinduced SH in the fundamental mode.

Fig. 3
Fig. 3

Rates of erasure of χ(2) gratings by SH radiation at 532 nm in aluminosilicate fibers doped with Er3+ (+), Sm3+ (⚪), and Tb3+ (◻) and those in germanosilicate fibers doped with Er3+ (△) and without rare-earth-ion doping (⨯). The in-fiber intensity of the erasing SH radiation was 10 GW/cm2 (for the Sm3+-doped fiber it was 40 GW/cm 2).

Metrics