Abstract

The operation at 1.5 μm of a silicon Fabry–Perot optical modulator is reported. The electrically driven device, which uses the thermo-optic effect to achieve as much as a 55% intensity modulation depth, has been realized by means of standard silicon microelectronic technology. This demonstrates that this new type of optical modulator can easily be integrated with electronic circuits. An accurate three-dimensional thermal analysis of the device has permitted the setup of a reliable numerical code aimed at the design of optimized integrated versions of it. The simulation outputs therefore predict operation frequencies of hundreds of kilohertz, remarkably superior to those previously reported in thermo-optic-effect-based modulators

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Soref, B. R. Bennett, IEEE J. Quantm Electron. QE-23, 123 (1987).
    [CrossRef]
  2. G. V. Treyz, Electron. Lett. 27, 118 (1991).
    [CrossRef]
  3. N. Takato, K. Jinguji, M. Yasu, H. Toba, M. Kawachi, J. Lightwave Technol. 6, 1003 (1988).
    [CrossRef]
  4. R. A. Mayer, K H. Jung, W. D. Lee, D. L. Kwong, J. C. Campbell, Opt. Lett. 17, 1812 (1992).
    [CrossRef] [PubMed]
  5. G. Cocorullo, I. Rendina, Electron. Lett. 28, 83 (1992).
    [CrossRef]
  6. H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits, McGraw-Hill Optical and Electro-Optical Engineering Series (McGraw-Hill, New York, 1989), p. 135.
  7. G. Cocorullo, F. G. Della Corte, I. Rendina, A. Cutolo, Opt. Commun. 86, 228 (1991).
    [CrossRef]

1992 (2)

1991 (2)

G. Cocorullo, F. G. Della Corte, I. Rendina, A. Cutolo, Opt. Commun. 86, 228 (1991).
[CrossRef]

G. V. Treyz, Electron. Lett. 27, 118 (1991).
[CrossRef]

1988 (1)

N. Takato, K. Jinguji, M. Yasu, H. Toba, M. Kawachi, J. Lightwave Technol. 6, 1003 (1988).
[CrossRef]

1987 (1)

R. A. Soref, B. R. Bennett, IEEE J. Quantm Electron. QE-23, 123 (1987).
[CrossRef]

Bennett, B. R.

R. A. Soref, B. R. Bennett, IEEE J. Quantm Electron. QE-23, 123 (1987).
[CrossRef]

Campbell, J. C.

Cocorullo, G.

G. Cocorullo, I. Rendina, Electron. Lett. 28, 83 (1992).
[CrossRef]

G. Cocorullo, F. G. Della Corte, I. Rendina, A. Cutolo, Opt. Commun. 86, 228 (1991).
[CrossRef]

Cutolo, A.

G. Cocorullo, F. G. Della Corte, I. Rendina, A. Cutolo, Opt. Commun. 86, 228 (1991).
[CrossRef]

Della Corte, F. G.

G. Cocorullo, F. G. Della Corte, I. Rendina, A. Cutolo, Opt. Commun. 86, 228 (1991).
[CrossRef]

Haruna, M.

H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits, McGraw-Hill Optical and Electro-Optical Engineering Series (McGraw-Hill, New York, 1989), p. 135.

Jinguji, K.

N. Takato, K. Jinguji, M. Yasu, H. Toba, M. Kawachi, J. Lightwave Technol. 6, 1003 (1988).
[CrossRef]

Jung, K H.

Kawachi, M.

N. Takato, K. Jinguji, M. Yasu, H. Toba, M. Kawachi, J. Lightwave Technol. 6, 1003 (1988).
[CrossRef]

Kwong, D. L.

Lee, W. D.

Mayer, R. A.

Nishihara, H.

H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits, McGraw-Hill Optical and Electro-Optical Engineering Series (McGraw-Hill, New York, 1989), p. 135.

Rendina, I.

G. Cocorullo, I. Rendina, Electron. Lett. 28, 83 (1992).
[CrossRef]

G. Cocorullo, F. G. Della Corte, I. Rendina, A. Cutolo, Opt. Commun. 86, 228 (1991).
[CrossRef]

Soref, R. A.

R. A. Soref, B. R. Bennett, IEEE J. Quantm Electron. QE-23, 123 (1987).
[CrossRef]

Suhara, T.

H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits, McGraw-Hill Optical and Electro-Optical Engineering Series (McGraw-Hill, New York, 1989), p. 135.

Takato, N.

N. Takato, K. Jinguji, M. Yasu, H. Toba, M. Kawachi, J. Lightwave Technol. 6, 1003 (1988).
[CrossRef]

Toba, H.

N. Takato, K. Jinguji, M. Yasu, H. Toba, M. Kawachi, J. Lightwave Technol. 6, 1003 (1988).
[CrossRef]

Treyz, G. V.

G. V. Treyz, Electron. Lett. 27, 118 (1991).
[CrossRef]

Yasu, M.

N. Takato, K. Jinguji, M. Yasu, H. Toba, M. Kawachi, J. Lightwave Technol. 6, 1003 (1988).
[CrossRef]

Electron. Lett. (2)

G. V. Treyz, Electron. Lett. 27, 118 (1991).
[CrossRef]

G. Cocorullo, I. Rendina, Electron. Lett. 28, 83 (1992).
[CrossRef]

IEEE J. Quantm Electron. (1)

R. A. Soref, B. R. Bennett, IEEE J. Quantm Electron. QE-23, 123 (1987).
[CrossRef]

J. Lightwave Technol. (1)

N. Takato, K. Jinguji, M. Yasu, H. Toba, M. Kawachi, J. Lightwave Technol. 6, 1003 (1988).
[CrossRef]

Opt. Commun. (1)

G. Cocorullo, F. G. Della Corte, I. Rendina, A. Cutolo, Opt. Commun. 86, 228 (1991).
[CrossRef]

Opt. Lett. (1)

Other (1)

H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits, McGraw-Hill Optical and Electro-Optical Engineering Series (McGraw-Hill, New York, 1989), p. 135.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the Si Fabry–Perot modulator.

Fig. 2
Fig. 2

Oscilloscope traces showing (a) the modulation pattern induced by (b) driving current pulses.

Fig. 3
Fig. 3

Measured and calculated transmitted light intensity versus time for a 5.0-ms-long gate electric pulse of 2.5 W.

Fig. 4
Fig. 4

Time response of the transmitted light and of the guiding region temperature calculated for a 10-μm-long integrated modulator driven by a 30-mW pulse power.

Fig. 5
Fig. 5

Modulation depth (dashed curves) and repetition rate (solid curves) calculated as a function of the driving electrical power dissipated in a 10-μm-long device. The plots have been carried out for three different gate pulse lengths (tp).

Metrics