Abstract

We have observed, for the first time to our knowledge, residual stress-induced birefringent dual-polarization modes in a diode-pumped, single-frequency, microchip cw 2.0914-μm Ho,Tm:YAG laser. The two orthogonally polarized modes were separated in frequency by approximately 12 MHz and, when photodetected, produced a 12-MHz self-heterodyne beat signal. The self-heterodyne signal could be eliminated by an external λ/4 plate and a polarizer to filter out one of the modes, but this required regulation of the pump laser power to better than 1%. These results have important implications for use of the microchip Ho,Tm:YAG laser in a heterodyne detection coherent lidar.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Owyoung, P. Esherick, Opt. Lett. 12,999 (1987).
    [CrossRef] [PubMed]
  2. P. Esherick, A. Owyoung, J. Opt. Soc. Am. B 4, 41 (1987).
    [CrossRef]
  3. W. Koechner, Solid-State Laser Engineering, 2nd ed. (Springer-Verlag, Berlin, 1988), Chap. 7.
  4. F. Zernike, J. E. Midwinter, Applied Nonlinear Optics (Wiley, New York, 1973).
  5. A. A. Kaminskii, Laser Crystals—Their Physics and Properties (Springer-Verlag, Berlin, 1981), p. 320.
  6. M. E. Storm, G. J. Koch, W. W. Rohrbach, in Advanced Solid-State Lasers, H. P. Jenssen, G. Dubé, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1990), p. 140.
  7. Y. Wu, Y. Xie, Appl. Opt. 28, 2043 (1989).
    [CrossRef] [PubMed]
  8. J. J. Zayhowski, A. Mooradian, Opt. Lett. 14, 618 (1989).
    [CrossRef] [PubMed]
  9. J. J. Zayhowski, J. A. Keszenheimer, IEEE J. Quantum Electron. 28, 1118 (1992).
    [CrossRef]
  10. T. J. Kane, A. C. Nilsson, R. L. Byer, Opt. Lett. 12, 175 (1987).
    [CrossRef] [PubMed]
  11. M. E. Storm, W. W. Rohrbach, Appl. Opt. 26, 4965 (1989).
    [CrossRef]
  12. G. J. Koch, J. P. Deyst, M. E. Storm, Opt. Lett. 18, 1235 (1993).
    [CrossRef] [PubMed]

1993

1992

J. J. Zayhowski, J. A. Keszenheimer, IEEE J. Quantum Electron. 28, 1118 (1992).
[CrossRef]

1989

1987

Byer, R. L.

Deyst, J. P.

Esherick, P.

Kaminskii, A. A.

A. A. Kaminskii, Laser Crystals—Their Physics and Properties (Springer-Verlag, Berlin, 1981), p. 320.

Kane, T. J.

Keszenheimer, J. A.

J. J. Zayhowski, J. A. Keszenheimer, IEEE J. Quantum Electron. 28, 1118 (1992).
[CrossRef]

Koch, G. J.

G. J. Koch, J. P. Deyst, M. E. Storm, Opt. Lett. 18, 1235 (1993).
[CrossRef] [PubMed]

M. E. Storm, G. J. Koch, W. W. Rohrbach, in Advanced Solid-State Lasers, H. P. Jenssen, G. Dubé, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1990), p. 140.

Koechner, W.

W. Koechner, Solid-State Laser Engineering, 2nd ed. (Springer-Verlag, Berlin, 1988), Chap. 7.

Midwinter, J. E.

F. Zernike, J. E. Midwinter, Applied Nonlinear Optics (Wiley, New York, 1973).

Mooradian, A.

Nilsson, A. C.

Owyoung, A.

Rohrbach, W. W.

M. E. Storm, W. W. Rohrbach, Appl. Opt. 26, 4965 (1989).
[CrossRef]

M. E. Storm, G. J. Koch, W. W. Rohrbach, in Advanced Solid-State Lasers, H. P. Jenssen, G. Dubé, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1990), p. 140.

Storm, M. E.

G. J. Koch, J. P. Deyst, M. E. Storm, Opt. Lett. 18, 1235 (1993).
[CrossRef] [PubMed]

M. E. Storm, W. W. Rohrbach, Appl. Opt. 26, 4965 (1989).
[CrossRef]

M. E. Storm, G. J. Koch, W. W. Rohrbach, in Advanced Solid-State Lasers, H. P. Jenssen, G. Dubé, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1990), p. 140.

Wu, Y.

Xie, Y.

Zayhowski, J. J.

J. J. Zayhowski, J. A. Keszenheimer, IEEE J. Quantum Electron. 28, 1118 (1992).
[CrossRef]

J. J. Zayhowski, A. Mooradian, Opt. Lett. 14, 618 (1989).
[CrossRef] [PubMed]

Zernike, F.

F. Zernike, J. E. Midwinter, Applied Nonlinear Optics (Wiley, New York, 1973).

Appl. Opt.

M. E. Storm, W. W. Rohrbach, Appl. Opt. 26, 4965 (1989).
[CrossRef]

Y. Wu, Y. Xie, Appl. Opt. 28, 2043 (1989).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

J. J. Zayhowski, J. A. Keszenheimer, IEEE J. Quantum Electron. 28, 1118 (1992).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Other

W. Koechner, Solid-State Laser Engineering, 2nd ed. (Springer-Verlag, Berlin, 1988), Chap. 7.

F. Zernike, J. E. Midwinter, Applied Nonlinear Optics (Wiley, New York, 1973).

A. A. Kaminskii, Laser Crystals—Their Physics and Properties (Springer-Verlag, Berlin, 1981), p. 320.

M. E. Storm, G. J. Koch, W. W. Rohrbach, in Advanced Solid-State Lasers, H. P. Jenssen, G. Dubé, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1990), p. 140.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the Ho:YAG laser and the removable optical diagnostics. TEC’s, thermoelectric cooler.

Fig. 2
Fig. 2

Photograph of the Ho:YAG laser output power spectrum showing the 12-MHz self-heterodyne beat signal.

Fig. 3
Fig. 3

Measurement of the self-heterodyning beat frequency as a function of laser pump power.

Fig. 4
Fig. 4

Measurement of the polarization axes of the two laser output modes (modes 1 and 2) as a function of laser pump power. The rotation of the axis can be seen, and the two modes remained orthogonal.

Fig. 5
Fig. 5

Measured relative optical frequency shift of the laser output (mode 1) as a function of pump power. Results for mode 2 were essentially the same, indicating that the two modes shifted in frequency by the same amount and remained separated in frequency by essentially 12 MHz.

Metrics