Abstract

A method for the exact determination of the remaining cladding thickness (h) of a polished single-mode fiber, from the measurement of the throughput attenuation, is shown. Experimental loss variations with h are verified with the theoretical expression of the loss coefficient, which depends on the fiber parameters, source wavelength, and refractive index of the liquid placed over the polished fiber.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Lamouroux, P. Morel, B. Prade, J. Y. Vinet, J. Opt. Soc. Am. A 2, 759 (1985).
    [Crossref]
  2. O. G. Leminger, R. Zengerle, J. Lightwave Technol. LT-3, 864 (1985).
    [Crossref]
  3. R. A. Bergh, G. Kotler, H. Shaw, Electron. Lett. 16, 260 (1980).
    [Crossref]
  4. M. Zhang, E. Garmire, J. Lightwave Technol. LT-5, 260 (1987).
    [Crossref]
  5. S. T. Nicholls, Electron. Lett. 21, 825 (1985).
    [Crossref]
  6. C. D. Hussey, J. D. Minelly, Electron. Lett. 24, 805 (1988).
    [Crossref]
  7. A. K. Das, A. K. Mandal, M. Pandit, Proc. Soc. Photo-Opt. Instrum. Eng. 1572, 572 (1991).
  8. J. A. Arnaud, Bell Syst. Tech. J. 53, 675 (1974).
  9. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).
  10. A. K Das, S. Bhattacharyya, J. Lightwave. Technol. LT-3, 83 (1985).
    [Crossref]
  11. O. Leminger, R. Zengerle, Opt. Lett. 12, 211 (1987).
    [Crossref] [PubMed]

1991 (1)

A. K. Das, A. K. Mandal, M. Pandit, Proc. Soc. Photo-Opt. Instrum. Eng. 1572, 572 (1991).

1988 (1)

C. D. Hussey, J. D. Minelly, Electron. Lett. 24, 805 (1988).
[Crossref]

1987 (2)

M. Zhang, E. Garmire, J. Lightwave Technol. LT-5, 260 (1987).
[Crossref]

O. Leminger, R. Zengerle, Opt. Lett. 12, 211 (1987).
[Crossref] [PubMed]

1985 (4)

S. T. Nicholls, Electron. Lett. 21, 825 (1985).
[Crossref]

B. Lamouroux, P. Morel, B. Prade, J. Y. Vinet, J. Opt. Soc. Am. A 2, 759 (1985).
[Crossref]

O. G. Leminger, R. Zengerle, J. Lightwave Technol. LT-3, 864 (1985).
[Crossref]

A. K Das, S. Bhattacharyya, J. Lightwave. Technol. LT-3, 83 (1985).
[Crossref]

1980 (1)

R. A. Bergh, G. Kotler, H. Shaw, Electron. Lett. 16, 260 (1980).
[Crossref]

1974 (1)

J. A. Arnaud, Bell Syst. Tech. J. 53, 675 (1974).

Arnaud, J. A.

J. A. Arnaud, Bell Syst. Tech. J. 53, 675 (1974).

Bergh, R. A.

R. A. Bergh, G. Kotler, H. Shaw, Electron. Lett. 16, 260 (1980).
[Crossref]

Bhattacharyya, S.

A. K Das, S. Bhattacharyya, J. Lightwave. Technol. LT-3, 83 (1985).
[Crossref]

Das, A. K

A. K Das, S. Bhattacharyya, J. Lightwave. Technol. LT-3, 83 (1985).
[Crossref]

Das, A. K.

A. K. Das, A. K. Mandal, M. Pandit, Proc. Soc. Photo-Opt. Instrum. Eng. 1572, 572 (1991).

Garmire, E.

M. Zhang, E. Garmire, J. Lightwave Technol. LT-5, 260 (1987).
[Crossref]

Hussey, C. D.

C. D. Hussey, J. D. Minelly, Electron. Lett. 24, 805 (1988).
[Crossref]

Kotler, G.

R. A. Bergh, G. Kotler, H. Shaw, Electron. Lett. 16, 260 (1980).
[Crossref]

Lamouroux, B.

Leminger, O.

Leminger, O. G.

O. G. Leminger, R. Zengerle, J. Lightwave Technol. LT-3, 864 (1985).
[Crossref]

Love, J. D.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).

Mandal, A. K.

A. K. Das, A. K. Mandal, M. Pandit, Proc. Soc. Photo-Opt. Instrum. Eng. 1572, 572 (1991).

Minelly, J. D.

C. D. Hussey, J. D. Minelly, Electron. Lett. 24, 805 (1988).
[Crossref]

Morel, P.

Nicholls, S. T.

S. T. Nicholls, Electron. Lett. 21, 825 (1985).
[Crossref]

Pandit, M.

A. K. Das, A. K. Mandal, M. Pandit, Proc. Soc. Photo-Opt. Instrum. Eng. 1572, 572 (1991).

Prade, B.

Shaw, H.

R. A. Bergh, G. Kotler, H. Shaw, Electron. Lett. 16, 260 (1980).
[Crossref]

Snyder, A. W.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).

Vinet, J. Y.

Zengerle, R.

O. Leminger, R. Zengerle, Opt. Lett. 12, 211 (1987).
[Crossref] [PubMed]

O. G. Leminger, R. Zengerle, J. Lightwave Technol. LT-3, 864 (1985).
[Crossref]

Zhang, M.

M. Zhang, E. Garmire, J. Lightwave Technol. LT-5, 260 (1987).
[Crossref]

Bell Syst. Tech. J. (1)

J. A. Arnaud, Bell Syst. Tech. J. 53, 675 (1974).

Electron. Lett. (3)

S. T. Nicholls, Electron. Lett. 21, 825 (1985).
[Crossref]

C. D. Hussey, J. D. Minelly, Electron. Lett. 24, 805 (1988).
[Crossref]

R. A. Bergh, G. Kotler, H. Shaw, Electron. Lett. 16, 260 (1980).
[Crossref]

J. Lightwave Technol. (2)

M. Zhang, E. Garmire, J. Lightwave Technol. LT-5, 260 (1987).
[Crossref]

O. G. Leminger, R. Zengerle, J. Lightwave Technol. LT-3, 864 (1985).
[Crossref]

J. Lightwave. Technol. (1)

A. K Das, S. Bhattacharyya, J. Lightwave. Technol. LT-3, 83 (1985).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Lett. (1)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

A. K. Das, A. K. Mandal, M. Pandit, Proc. Soc. Photo-Opt. Instrum. Eng. 1572, 572 (1991).

Other (1)

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Cross section of the half-coupler during polishing with a liquid of large thickness on top of it.

Fig. 2
Fig. 2

Theoretical and experimental loss calibration curves as a function of the uniform profile of the remaining cladding thickness h; Li = 3 mm.

Fig. 3
Fig. 3

Theoretical and experimental loss calibration curves as a function of the nonuniform profile of the remaining cladding thickness h(z) for R1 = 1 m.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

γ ( z ) = 10 log 10 e π ( C os l , m , C so l , m ) d M / d β ,
d M / d β = 4 β 0 R 2 / π 2 ,
γ ( z ) = 10 log 10 e { 8 β 0 [ 1 - ( W / V 0 ) 2 ] } / ( n cl 2 k 2 N 0 2 ) × exp ( { - 2 [ a + h ( z ) ] / a } [ ( 4 / π 2 ) ( V 0 2 - W 2 ) + W 2 ] 1 / 2 ) ,
N 0 2 = [ π a 2 K 1 2 ( W ) ] / 2 [ 1 - ( W / V ) 2 ] ,
V = k a ( n co 2 - n cl 2 ) 1 / 2 ,
V 2 = W 2 + U 2 , W = a ( β 0 2 - n cl 2 k 2 ) 1 / 2 = 1.1428 V - 0.996 ,             1.5 < V < 2.5 ,
V 0 = k a ( n l 2 - n cl 2 ) 1 / 2 .
α ( R 1 ) = - γ ( z ) d z ,
h ( z ) h 0 + z 2 / ( 2 R 1 ) ,

Metrics