Abstract

We present what is to our knowledge the first study of optical bistability in Fabry–Perot laser-diode amplifiers that have asymmetric facet reflectivities. When operated in reflection, the light input–light output characteristics exhibit a transition from counterclockwise to clockwise hysteresis by way of an X-shaped or butterfly hysteresis. This transition can be achieved by a change in either the device bias or the phase detuning of the incident light. Our results are in good agreement with calculation.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Ogasawara, R. Ito, Jpn. J. Appl. Phys. 25, L739 (1986).
    [CrossRef]
  2. H. Kawaguchi, K. Magari, K. Oe, Y. Noguchi, Y. Nakano, G. Motosugi, Appl. Phys. Lett. 50, 66 (1987).
    [CrossRef]
  3. M. J. Adams, J. V. Collins, I. D. Henning, Proc. Inst. Electr. Eng. Part J 132, 58 (1985).
  4. M. J. Adams, H. J. Westlake, M. J. O’Mahony, in Optical Nonlinearities and Instabilities in Semiconductors (Academic, San Diego, Calif., 1988), Chap. 15.
  5. It can be shown that the position-independent approximation of Adam’s model is equally valid for our system.6
  6. N. F. Mitchell, Ph.D. dissertation (Department of Physics, Trinity College, Dublin, 1993).
  7. M. J. Adams, Solid-State Electron. 30, 43 (1987).
    [CrossRef]
  8. N. F. Mitchell, Department of Physics, Trinity College, Dublin (unpublished results).
  9. D. A. B. Miller, S. D. Smith, C. T. Seaton, IEEE J. Quantum Electron. QE-17, 312 (1981).
    [CrossRef]
  10. M. J. Adams, Opt. Quantum Electron. 19, S37 (1987).
    [CrossRef]
  11. J. C. Connolly, T. R. Stewart, D. B. Gilbert, S. E. Slavin, D. B. Carlin, M. Ettenberg, Proc. Soc. Photo-Opt. Instrum. Eng. 885, 124 (1988).
  12. M. J. Adams, R. Wyatt, Proc. Inst. Electr. Eng. Part J 134, 35 (1987).
  13. Z. Pan, H. Lin, M. Dagenais, Appl. Phys. Lett. 58, 687 (1991).
    [CrossRef]

1991 (1)

Z. Pan, H. Lin, M. Dagenais, Appl. Phys. Lett. 58, 687 (1991).
[CrossRef]

1988 (1)

J. C. Connolly, T. R. Stewart, D. B. Gilbert, S. E. Slavin, D. B. Carlin, M. Ettenberg, Proc. Soc. Photo-Opt. Instrum. Eng. 885, 124 (1988).

1987 (4)

M. J. Adams, R. Wyatt, Proc. Inst. Electr. Eng. Part J 134, 35 (1987).

M. J. Adams, Opt. Quantum Electron. 19, S37 (1987).
[CrossRef]

H. Kawaguchi, K. Magari, K. Oe, Y. Noguchi, Y. Nakano, G. Motosugi, Appl. Phys. Lett. 50, 66 (1987).
[CrossRef]

M. J. Adams, Solid-State Electron. 30, 43 (1987).
[CrossRef]

1986 (1)

N. Ogasawara, R. Ito, Jpn. J. Appl. Phys. 25, L739 (1986).
[CrossRef]

1985 (1)

M. J. Adams, J. V. Collins, I. D. Henning, Proc. Inst. Electr. Eng. Part J 132, 58 (1985).

1981 (1)

D. A. B. Miller, S. D. Smith, C. T. Seaton, IEEE J. Quantum Electron. QE-17, 312 (1981).
[CrossRef]

Adams, M. J.

M. J. Adams, Solid-State Electron. 30, 43 (1987).
[CrossRef]

M. J. Adams, Opt. Quantum Electron. 19, S37 (1987).
[CrossRef]

M. J. Adams, R. Wyatt, Proc. Inst. Electr. Eng. Part J 134, 35 (1987).

M. J. Adams, J. V. Collins, I. D. Henning, Proc. Inst. Electr. Eng. Part J 132, 58 (1985).

M. J. Adams, H. J. Westlake, M. J. O’Mahony, in Optical Nonlinearities and Instabilities in Semiconductors (Academic, San Diego, Calif., 1988), Chap. 15.

Carlin, D. B.

J. C. Connolly, T. R. Stewart, D. B. Gilbert, S. E. Slavin, D. B. Carlin, M. Ettenberg, Proc. Soc. Photo-Opt. Instrum. Eng. 885, 124 (1988).

Collins, J. V.

M. J. Adams, J. V. Collins, I. D. Henning, Proc. Inst. Electr. Eng. Part J 132, 58 (1985).

Connolly, J. C.

J. C. Connolly, T. R. Stewart, D. B. Gilbert, S. E. Slavin, D. B. Carlin, M. Ettenberg, Proc. Soc. Photo-Opt. Instrum. Eng. 885, 124 (1988).

Dagenais, M.

Z. Pan, H. Lin, M. Dagenais, Appl. Phys. Lett. 58, 687 (1991).
[CrossRef]

Ettenberg, M.

J. C. Connolly, T. R. Stewart, D. B. Gilbert, S. E. Slavin, D. B. Carlin, M. Ettenberg, Proc. Soc. Photo-Opt. Instrum. Eng. 885, 124 (1988).

Gilbert, D. B.

J. C. Connolly, T. R. Stewart, D. B. Gilbert, S. E. Slavin, D. B. Carlin, M. Ettenberg, Proc. Soc. Photo-Opt. Instrum. Eng. 885, 124 (1988).

Henning, I. D.

M. J. Adams, J. V. Collins, I. D. Henning, Proc. Inst. Electr. Eng. Part J 132, 58 (1985).

Ito, R.

N. Ogasawara, R. Ito, Jpn. J. Appl. Phys. 25, L739 (1986).
[CrossRef]

Kawaguchi, H.

H. Kawaguchi, K. Magari, K. Oe, Y. Noguchi, Y. Nakano, G. Motosugi, Appl. Phys. Lett. 50, 66 (1987).
[CrossRef]

Lin, H.

Z. Pan, H. Lin, M. Dagenais, Appl. Phys. Lett. 58, 687 (1991).
[CrossRef]

Magari, K.

H. Kawaguchi, K. Magari, K. Oe, Y. Noguchi, Y. Nakano, G. Motosugi, Appl. Phys. Lett. 50, 66 (1987).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, S. D. Smith, C. T. Seaton, IEEE J. Quantum Electron. QE-17, 312 (1981).
[CrossRef]

Mitchell, N. F.

N. F. Mitchell, Department of Physics, Trinity College, Dublin (unpublished results).

N. F. Mitchell, Ph.D. dissertation (Department of Physics, Trinity College, Dublin, 1993).

Motosugi, G.

H. Kawaguchi, K. Magari, K. Oe, Y. Noguchi, Y. Nakano, G. Motosugi, Appl. Phys. Lett. 50, 66 (1987).
[CrossRef]

Nakano, Y.

H. Kawaguchi, K. Magari, K. Oe, Y. Noguchi, Y. Nakano, G. Motosugi, Appl. Phys. Lett. 50, 66 (1987).
[CrossRef]

Noguchi, Y.

H. Kawaguchi, K. Magari, K. Oe, Y. Noguchi, Y. Nakano, G. Motosugi, Appl. Phys. Lett. 50, 66 (1987).
[CrossRef]

O’Mahony, M. J.

M. J. Adams, H. J. Westlake, M. J. O’Mahony, in Optical Nonlinearities and Instabilities in Semiconductors (Academic, San Diego, Calif., 1988), Chap. 15.

Oe, K.

H. Kawaguchi, K. Magari, K. Oe, Y. Noguchi, Y. Nakano, G. Motosugi, Appl. Phys. Lett. 50, 66 (1987).
[CrossRef]

Ogasawara, N.

N. Ogasawara, R. Ito, Jpn. J. Appl. Phys. 25, L739 (1986).
[CrossRef]

Pan, Z.

Z. Pan, H. Lin, M. Dagenais, Appl. Phys. Lett. 58, 687 (1991).
[CrossRef]

Seaton, C. T.

D. A. B. Miller, S. D. Smith, C. T. Seaton, IEEE J. Quantum Electron. QE-17, 312 (1981).
[CrossRef]

Slavin, S. E.

J. C. Connolly, T. R. Stewart, D. B. Gilbert, S. E. Slavin, D. B. Carlin, M. Ettenberg, Proc. Soc. Photo-Opt. Instrum. Eng. 885, 124 (1988).

Smith, S. D.

D. A. B. Miller, S. D. Smith, C. T. Seaton, IEEE J. Quantum Electron. QE-17, 312 (1981).
[CrossRef]

Stewart, T. R.

J. C. Connolly, T. R. Stewart, D. B. Gilbert, S. E. Slavin, D. B. Carlin, M. Ettenberg, Proc. Soc. Photo-Opt. Instrum. Eng. 885, 124 (1988).

Westlake, H. J.

M. J. Adams, H. J. Westlake, M. J. O’Mahony, in Optical Nonlinearities and Instabilities in Semiconductors (Academic, San Diego, Calif., 1988), Chap. 15.

Wyatt, R.

M. J. Adams, R. Wyatt, Proc. Inst. Electr. Eng. Part J 134, 35 (1987).

Appl. Phys. Lett. (2)

H. Kawaguchi, K. Magari, K. Oe, Y. Noguchi, Y. Nakano, G. Motosugi, Appl. Phys. Lett. 50, 66 (1987).
[CrossRef]

Z. Pan, H. Lin, M. Dagenais, Appl. Phys. Lett. 58, 687 (1991).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. A. B. Miller, S. D. Smith, C. T. Seaton, IEEE J. Quantum Electron. QE-17, 312 (1981).
[CrossRef]

Jpn. J. Appl. Phys. (1)

N. Ogasawara, R. Ito, Jpn. J. Appl. Phys. 25, L739 (1986).
[CrossRef]

Opt. Quantum Electron. (1)

M. J. Adams, Opt. Quantum Electron. 19, S37 (1987).
[CrossRef]

Proc. Inst. Electr. Eng. Part J (2)

M. J. Adams, J. V. Collins, I. D. Henning, Proc. Inst. Electr. Eng. Part J 132, 58 (1985).

M. J. Adams, R. Wyatt, Proc. Inst. Electr. Eng. Part J 134, 35 (1987).

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

J. C. Connolly, T. R. Stewart, D. B. Gilbert, S. E. Slavin, D. B. Carlin, M. Ettenberg, Proc. Soc. Photo-Opt. Instrum. Eng. 885, 124 (1988).

Solid-State Electron. (1)

M. J. Adams, Solid-State Electron. 30, 43 (1987).
[CrossRef]

Other (4)

N. F. Mitchell, Department of Physics, Trinity College, Dublin (unpublished results).

M. J. Adams, H. J. Westlake, M. J. O’Mahony, in Optical Nonlinearities and Instabilities in Semiconductors (Academic, San Diego, Calif., 1988), Chap. 15.

It can be shown that the position-independent approximation of Adam’s model is equally valid for our system.6

N. F. Mitchell, Ph.D. dissertation (Department of Physics, Trinity College, Dublin, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Calculated normalized transmitted intensity versus normalized incident intensity for various indicated AFP-LDA bias values. Φ0 = −0.3π.

Fig. 2.
Fig. 2.

Calculated normalized reflected intensity versus normalized incident intensity for the same conditions as in Fig. 1. As the AFP-LDA bias is reduced, the calculated hysteresis changes from counterclockwise (58 mA) to clockwise (48.3 mA) via an X-shaped hysteresis loop (53.15 mA).

Fig. 3.
Fig. 3.

Calculated normalized reflected intensity versus normalized incident intensity for varying detuning Φ0 at a fixed AFP-LDA bias of 53.15 mA. The sense in which the calculated hysteresis loop is traversed varies with detuning.

Fig. 4.
Fig. 4.

Schematic of the experimental arrangement. The probe laser and the AFP-LDA device each have one high-reflectivity facet (HR), and the other facet as cleaved. Both laser mounts are temperature controlled. BS, beam splitter; PD’s, photodetectors; ATTEN, variable attenuator.

Fig. 5.
Fig. 5.

(a) Measured reflected power versus input power for the indicated AFP-LDA bias values. Counterclockwise (i), X-shaped (ii), and clockwise (iii) hysteresis are observed with decreasing bias, (b) Measured transmitted power versus input power for the same conditions as in (a).

Fig. 6.
Fig. 6.

Measured reflected power versus input power for fixed AFP-LDA bias of 57.8 mA and three indicated values of initial detuning. With increasing detuning, counterclockwise (i), X-shaped (ii), and clockwise (iii) hysteresis are observed.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I tr I in = ( 1 R 1 ) ( 1 R 2 ) exp ( g L ) [ 1 R exp ( g L ) ] 2 + 4 R exp ( g L ) sin 2 Φ ,
I ref I in = [ R 1 R 2 exp ( g L ) ] 2 + 4 R exp ( g L ) sin 2 Φ [ 1 R exp ( g L ) ] 2 + 4 R exp ( g L ) sin 2 Φ ,
I av I in = ( 1 R 1 ) [ 1 + R 2 exp ( g L ) ] [ exp ( g L ) 1 ] g L { [ 1 R exp ( g L ) ] 2 + 4 R exp ( g L ) sin 2 Φ } .
Φ = Φ 0 + g 0 L b 2 ( I av / I s 1 + I av / I s ) ,
g L = Γ g 0 L 1 + I av / I s α i L .

Metrics