Abstract

Ultrashort-pulse (<50-fs) second-harmonic generation in quasi-phase-matched dispersive media is analyzed in the regime of weak conversion with phase mismatch, group-velocity mismatch, and linear absorption accounted for. In addition to the expected increase in conversion efficiency, the quasi-phase-matched structure is shown to counteract pulse distortions.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Comly, E. Garraire, Appl. Phys. Lett. 12, 7 (1968).
    [Crossref]
  2. W. H. Glenn, IEEE J. Quantum Electron. QE-5, 284 (1969).
    [Crossref]
  3. A. M. Weiner, IEEE J. Quantum Electron. QE-19, 1276 (1983).
    [Crossref]
  4. P. P. Ho, D. Ji, Q. Z. Wang, R. R. Alfano, J. Opt. Soc. Am. B 7, 276 (1990).
    [Crossref]
  5. J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Peshan, Phys. Rev. 27, 1918 (1962).
    [Crossref]
  6. S. Somekh, A. Yariv, Opt. Commun. 6, 301 (1972).
    [Crossref]
  7. N. Feng, N. Ming, J. Hong, Y. Yang, J. Zhu, Z. Yang, Y. Wang, Appl. Phys. Lett. 37, 607 (1980).
    [Crossref]
  8. E. J. Lim, M. M. Fejer, R. L. Byer, Electron. Lett. 25, 174 (1989).
    [Crossref]
  9. S. Janz, C. Fernando, H. Dai, F. Chatenoud, M. Dion, R. Normandin, Opt. Lett. 18, 589 (1993).
    [Crossref] [PubMed]
  10. G. Khanarian, M. A. Mortavazi, A. J. East, Appl. Phys. Lett. 63, 1462 (1993).
    [Crossref]
  11. P. F. Curley, C. Spielmann, T. Brabec, F. Krausz, E. Wintner, A. J. Schmidt, Opt. Lett. 18, 54 (1993).
    [Crossref] [PubMed]
  12. D. R. Yankelevich, A. Dienes, A. Knoesen, R. W. Schoenlein, C. V. Shank, IEEE J. Quantum Electron. 28, 2398 (1992).
    [Crossref]

1993 (3)

1992 (1)

D. R. Yankelevich, A. Dienes, A. Knoesen, R. W. Schoenlein, C. V. Shank, IEEE J. Quantum Electron. 28, 2398 (1992).
[Crossref]

1990 (1)

1989 (1)

E. J. Lim, M. M. Fejer, R. L. Byer, Electron. Lett. 25, 174 (1989).
[Crossref]

1983 (1)

A. M. Weiner, IEEE J. Quantum Electron. QE-19, 1276 (1983).
[Crossref]

1980 (1)

N. Feng, N. Ming, J. Hong, Y. Yang, J. Zhu, Z. Yang, Y. Wang, Appl. Phys. Lett. 37, 607 (1980).
[Crossref]

1972 (1)

S. Somekh, A. Yariv, Opt. Commun. 6, 301 (1972).
[Crossref]

1969 (1)

W. H. Glenn, IEEE J. Quantum Electron. QE-5, 284 (1969).
[Crossref]

1968 (1)

J. Comly, E. Garraire, Appl. Phys. Lett. 12, 7 (1968).
[Crossref]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Peshan, Phys. Rev. 27, 1918 (1962).
[Crossref]

Alfano, R. R.

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Peshan, Phys. Rev. 27, 1918 (1962).
[Crossref]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Peshan, Phys. Rev. 27, 1918 (1962).
[Crossref]

Brabec, T.

Byer, R. L.

E. J. Lim, M. M. Fejer, R. L. Byer, Electron. Lett. 25, 174 (1989).
[Crossref]

Chatenoud, F.

Comly, J.

J. Comly, E. Garraire, Appl. Phys. Lett. 12, 7 (1968).
[Crossref]

Curley, P. F.

Dai, H.

Dienes, A.

D. R. Yankelevich, A. Dienes, A. Knoesen, R. W. Schoenlein, C. V. Shank, IEEE J. Quantum Electron. 28, 2398 (1992).
[Crossref]

Dion, M.

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Peshan, Phys. Rev. 27, 1918 (1962).
[Crossref]

East, A. J.

G. Khanarian, M. A. Mortavazi, A. J. East, Appl. Phys. Lett. 63, 1462 (1993).
[Crossref]

Fejer, M. M.

E. J. Lim, M. M. Fejer, R. L. Byer, Electron. Lett. 25, 174 (1989).
[Crossref]

Feng, N.

N. Feng, N. Ming, J. Hong, Y. Yang, J. Zhu, Z. Yang, Y. Wang, Appl. Phys. Lett. 37, 607 (1980).
[Crossref]

Fernando, C.

Garraire, E.

J. Comly, E. Garraire, Appl. Phys. Lett. 12, 7 (1968).
[Crossref]

Glenn, W. H.

W. H. Glenn, IEEE J. Quantum Electron. QE-5, 284 (1969).
[Crossref]

Ho, P. P.

Hong, J.

N. Feng, N. Ming, J. Hong, Y. Yang, J. Zhu, Z. Yang, Y. Wang, Appl. Phys. Lett. 37, 607 (1980).
[Crossref]

Janz, S.

Ji, D.

Khanarian, G.

G. Khanarian, M. A. Mortavazi, A. J. East, Appl. Phys. Lett. 63, 1462 (1993).
[Crossref]

Knoesen, A.

D. R. Yankelevich, A. Dienes, A. Knoesen, R. W. Schoenlein, C. V. Shank, IEEE J. Quantum Electron. 28, 2398 (1992).
[Crossref]

Krausz, F.

Lim, E. J.

E. J. Lim, M. M. Fejer, R. L. Byer, Electron. Lett. 25, 174 (1989).
[Crossref]

Ming, N.

N. Feng, N. Ming, J. Hong, Y. Yang, J. Zhu, Z. Yang, Y. Wang, Appl. Phys. Lett. 37, 607 (1980).
[Crossref]

Mortavazi, M. A.

G. Khanarian, M. A. Mortavazi, A. J. East, Appl. Phys. Lett. 63, 1462 (1993).
[Crossref]

Normandin, R.

Peshan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Peshan, Phys. Rev. 27, 1918 (1962).
[Crossref]

Schmidt, A. J.

Schoenlein, R. W.

D. R. Yankelevich, A. Dienes, A. Knoesen, R. W. Schoenlein, C. V. Shank, IEEE J. Quantum Electron. 28, 2398 (1992).
[Crossref]

Shank, C. V.

D. R. Yankelevich, A. Dienes, A. Knoesen, R. W. Schoenlein, C. V. Shank, IEEE J. Quantum Electron. 28, 2398 (1992).
[Crossref]

Somekh, S.

S. Somekh, A. Yariv, Opt. Commun. 6, 301 (1972).
[Crossref]

Spielmann, C.

Wang, Q. Z.

Wang, Y.

N. Feng, N. Ming, J. Hong, Y. Yang, J. Zhu, Z. Yang, Y. Wang, Appl. Phys. Lett. 37, 607 (1980).
[Crossref]

Weiner, A. M.

A. M. Weiner, IEEE J. Quantum Electron. QE-19, 1276 (1983).
[Crossref]

Wintner, E.

Yang, Y.

N. Feng, N. Ming, J. Hong, Y. Yang, J. Zhu, Z. Yang, Y. Wang, Appl. Phys. Lett. 37, 607 (1980).
[Crossref]

Yang, Z.

N. Feng, N. Ming, J. Hong, Y. Yang, J. Zhu, Z. Yang, Y. Wang, Appl. Phys. Lett. 37, 607 (1980).
[Crossref]

Yankelevich, D. R.

D. R. Yankelevich, A. Dienes, A. Knoesen, R. W. Schoenlein, C. V. Shank, IEEE J. Quantum Electron. 28, 2398 (1992).
[Crossref]

Yariv, A.

S. Somekh, A. Yariv, Opt. Commun. 6, 301 (1972).
[Crossref]

Zhu, J.

N. Feng, N. Ming, J. Hong, Y. Yang, J. Zhu, Z. Yang, Y. Wang, Appl. Phys. Lett. 37, 607 (1980).
[Crossref]

Appl. Phys. Lett. (3)

J. Comly, E. Garraire, Appl. Phys. Lett. 12, 7 (1968).
[Crossref]

G. Khanarian, M. A. Mortavazi, A. J. East, Appl. Phys. Lett. 63, 1462 (1993).
[Crossref]

N. Feng, N. Ming, J. Hong, Y. Yang, J. Zhu, Z. Yang, Y. Wang, Appl. Phys. Lett. 37, 607 (1980).
[Crossref]

Electron. Lett. (1)

E. J. Lim, M. M. Fejer, R. L. Byer, Electron. Lett. 25, 174 (1989).
[Crossref]

IEEE J. Quantum Electron. (3)

D. R. Yankelevich, A. Dienes, A. Knoesen, R. W. Schoenlein, C. V. Shank, IEEE J. Quantum Electron. 28, 2398 (1992).
[Crossref]

W. H. Glenn, IEEE J. Quantum Electron. QE-5, 284 (1969).
[Crossref]

A. M. Weiner, IEEE J. Quantum Electron. QE-19, 1276 (1983).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

S. Somekh, A. Yariv, Opt. Commun. 6, 301 (1972).
[Crossref]

Opt. Lett. (2)

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Peshan, Phys. Rev. 27, 1918 (1962).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of a QPM structure used for USP-SHG. Each period of the structure contains two regions having the same d coefficient with opposite signs. The pulses propagate obliquely in the xz plane.

Fig. 2.
Fig. 2.

Peak intensity of the SH pulse as a function of thickness z (in units of the coherence length Lc) for single-layer (SL) and QPM structures of the same total thickness. In the QPM structure, each layer has a thickness L = Lc. (a) ηLc = 0, α2Lc = 0; (b) ηLc = 0.2, α2Lc = 0; (c) ηLc= 0.2, α2Lc = 0.2. The SH intensity is magnified by the indicated factors in all the SL cases.

Fig. 3.
Fig. 3.

SH pulse width τp2 (in units of the fundamental pulse width τp1) versus the thickness z (in units of the coherence length Lc) corresponding to the two cases shown in Figs. 2(b) and 2(c) (circles: ηLc = 0.2, α2Lc = 0; triangles: ηLc = 0.2, α2Lc = 0.2). In the SL cases, τp2 is calculated only at z/Lc = 1, 3,…, 19. The dashed curves are for clarity only.

Fig. 4.
Fig. 4.

SH intensity profile obtained in single-layer (SL) and QPM structures for ηLc = 1, α2Lc = 0, and z = 5Lc. In this figure τQPM = 2.4τp1 = 0.74τSL.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

A z + γ 1 A t = 0 ,
B z + γ 2 B t = α 2 B i ρ A 2 exp ( i Δ k z ) ,
A ( z , t ) = A 0 f [ ( t γ 1 z ) / τ ] ,
B ( L , t ) = i ρ A 0 2 exp ( α 2 L ) 0 L d z f 2 ( u + η z ) × exp [ ( α 2 + i Δ k ) z ] ,
B ( z M , t ) = m 1 M B ( L , t T m ) × exp [ α 2 ( z M z m ) + i φ m ] ,
B ( z M , t ) = i ρ L A 0 2 × 0 1 d ζ m = 0 M 1 ( 1 ) m f 2 [ u + η L ( m + ζ ) ] × exp [ α L ( M m ζ ) ] × exp [ i Δ k L ( M m 1 + ζ ) ] .

Metrics