Abstract

A high-spectral-resolution lidar that uses an iodine absorption filter and a tunable, narrow-bandwidth Nd:YAG laser is demonstrated. Measurements of aerosol scattering cross section and optical depth are presented. The iodine absorption filter provides better performance than the Fabry–Perot étalon that it replaces.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, J. A. Weinman, Appl. Opt. 22, 3716 (1983).
    [CrossRef] [PubMed]
  2. H. Shimizu, S. A. Lee, C. Y. She, Appl. Opt. 22, 3716 (1983).
    [CrossRef]
  3. C. Y. She, R. J. Alvarez, L. M. Caldwell, D. A. Krueger, Opt. Lett. 17, 541 (1992).
    [CrossRef] [PubMed]
  4. J. A. Harrison, M. Zahedi, J. W. Nibler, Opt. Lett. 18, 149 (1993).
    [CrossRef] [PubMed]
  5. C. J. Grund, E. W. Eloranta, Opt. Eng. 30, 6 (1991).
    [CrossRef]
  6. S. Gerstenkorn, P. Luc, Atlas du spectre d’absorption de la molecule d’iode (Centre National de la Recherche Scientifique, Paris, 1978).
  7. A. Das, M. Frenkel, N. M. Gadalla, K N. Marsh, R. C. Wilhout, TRC Thermodynamic Tables (Non-hydrocarbons) (Thermodynamic Research Center, Texas A&M University, College Station, Tex., 1986), pp. k-190, ka-190.

1993

1992

1991

C. J. Grund, E. W. Eloranta, Opt. Eng. 30, 6 (1991).
[CrossRef]

1983

Alvarez, R. J.

Caldwell, L. M.

Das, A.

A. Das, M. Frenkel, N. M. Gadalla, K N. Marsh, R. C. Wilhout, TRC Thermodynamic Tables (Non-hydrocarbons) (Thermodynamic Research Center, Texas A&M University, College Station, Tex., 1986), pp. k-190, ka-190.

Eloranta, E. W.

Frenkel, M.

A. Das, M. Frenkel, N. M. Gadalla, K N. Marsh, R. C. Wilhout, TRC Thermodynamic Tables (Non-hydrocarbons) (Thermodynamic Research Center, Texas A&M University, College Station, Tex., 1986), pp. k-190, ka-190.

Gadalla, N. M.

A. Das, M. Frenkel, N. M. Gadalla, K N. Marsh, R. C. Wilhout, TRC Thermodynamic Tables (Non-hydrocarbons) (Thermodynamic Research Center, Texas A&M University, College Station, Tex., 1986), pp. k-190, ka-190.

Gerstenkorn, S.

S. Gerstenkorn, P. Luc, Atlas du spectre d’absorption de la molecule d’iode (Centre National de la Recherche Scientifique, Paris, 1978).

Grund, C. J.

C. J. Grund, E. W. Eloranta, Opt. Eng. 30, 6 (1991).
[CrossRef]

Harrison, J. A.

Krueger, D. A.

Lee, S. A.

Luc, P.

S. Gerstenkorn, P. Luc, Atlas du spectre d’absorption de la molecule d’iode (Centre National de la Recherche Scientifique, Paris, 1978).

Marsh, K N.

A. Das, M. Frenkel, N. M. Gadalla, K N. Marsh, R. C. Wilhout, TRC Thermodynamic Tables (Non-hydrocarbons) (Thermodynamic Research Center, Texas A&M University, College Station, Tex., 1986), pp. k-190, ka-190.

Nibler, J. W.

Roesler, F. L.

She, C. Y.

Shimizu, H.

Shipley, S. T.

Sroga, J. T.

Tracy, D. H.

Trauger, J. T.

Weinman, J. A.

Wilhout, R. C.

A. Das, M. Frenkel, N. M. Gadalla, K N. Marsh, R. C. Wilhout, TRC Thermodynamic Tables (Non-hydrocarbons) (Thermodynamic Research Center, Texas A&M University, College Station, Tex., 1986), pp. k-190, ka-190.

Zahedi, M.

Appl. Opt.

Opt. Eng.

C. J. Grund, E. W. Eloranta, Opt. Eng. 30, 6 (1991).
[CrossRef]

Opt. Lett.

Other

S. Gerstenkorn, P. Luc, Atlas du spectre d’absorption de la molecule d’iode (Centre National de la Recherche Scientifique, Paris, 1978).

A. Das, M. Frenkel, N. M. Gadalla, K N. Marsh, R. C. Wilhout, TRC Thermodynamic Tables (Non-hydrocarbons) (Thermodynamic Research Center, Texas A&M University, College Station, Tex., 1986), pp. k-190, ka-190.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

HSRL transmitter. A sample of each transmitted pulse is directed to a pair of optical fibers, delayed, and injected back to the receiver for system calibrations. The length of the fibers is set so that the time-separated pulses can be recorded into the data profile. A 4-cm-long iodine cell is used for frequency locking the laser: the seed laser temperature is dithered, and by maximization of the ratio between the first and the second calibration fiber signal the laser output is locked to the center of the absorption peak.

Fig. 2
Fig. 2

Transmission of the 43-cm iodine cell as a function of wavelength shift. The identification line numbers are from Ref. 6.

Fig. 3
Fig. 3

HSRL receiver. The received backscatter signal is prefiltered for the background with an interference filter and a low-resolution étalon pair before being directed into a beam splitter. The signal detected with photomultiplier tube PMT1 contains the information about the total aerosol and molecular backscatter signal. The signal directed through the iodine cell and detected by photomultiplier tube PMT2 is a combination of the amount of aerosol backscatter signal that passes through the absorption cells and the wings of the molecular backscatter signal.

Fig. 4
Fig. 4

(a) Transmission of a 43-cm cell (solid curve) together with the molecular transmission (dashed curve) at −65 °C air temperature as a function of wavelength shift. The dashed–dotted curve shows the calculated molecular spectrum at −65 °C. (b) Étalon transmission (solid curve), reflection (dashed curve) and calculated molecular transmission of the molecular channel (PMT1) (long-dashed curve) as a function of wavelength shift. The dashed–dotted curve shows the calculated molecular spectrum at −65 °C. (c) Comparison of the molecular transmission of the molecular channel (PMT1) (dashed curve) and the iodine cell (solid curve) as a function of air temperature, (d) Iodine cell aerosol (solid curve) and molecular (dashed curve) transmission as a function of cell temperature.

Fig. 5
Fig. 5

HSRL Measurements obtained on July 21, 1993. (a) Signals detected with PMT1 (solid curve) and PMT2 (dashed curve), (b) Aerosol backscatter cross section. (c) A constrained nonlinear regression fit (solid curve) to the inverted molecular signal (dashed curve at left) together with the calculated clear air molecular return (dashed curve at right), (d) Optical depth through the cloud layers.

Metrics