Abstract

The generation of highly stable optical pulses as short as 11 fs from a Kerr-lens mode-locked Ti:sapphire laser containing no intracavity prisms is demonstrated. In the femtosecond oscillator design reported, novel dielectric mirrors provide broadband dispersion control for solitonlike pulse formation.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Spence, P. N. Kean, W. Sibbett, Opt. Lett. 16, 42 (1991).
    [CrossRef] [PubMed]
  2. T. Brabec, Ch. Spielmann, F. Krausz, Opt. Lett. 16, 1961 (1991).
    [CrossRef] [PubMed]
  3. R. L. Fork, O. E. Martinez, J. P. Gordon, Opt. Lett. 9, (1984).
    [CrossRef] [PubMed]
  4. Ch. Spielmann, P. F. Curley, T. Brabec, E. Wintner, F. Krausz, Electron. Lett. 28, 1532 (1992); C. P. Huang, M. T. Asaki, S. Backus, M. M. Murnane, H. C. Kapteyn, H. Nathel, Opt. Lett.1289 (1992); B. Proctor, F. Wise, Opt. Lett. 17, 1295 (1992); B. E. Lemoff, C. P. J. Barty, Opt. Lett. 17, 1367 (1992); P. F. Curley, Ch. Spielmann, T. Brabec, F. Krausz, E. Wintner, A. J. Schmidt, Opt. Lett. 18, 54 (1993); B. Proctor, F. Wise, Appl. Phys. Lett. 62, 470 (1993); M. Asaki, C. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, M. M. Murnane, Opt. Lett. 18, 977 (1993).
    [CrossRef] [PubMed]
  5. Ch. Spielmann, P. F. Curley, T. Brabec, F. Krausz, “Ultrabroad-band-femtosecond lasers,”IEEE J. Quantum Electron. (to be published).
  6. J. Kuhl, J. Heppner, IEEE J. Quantum Electron. QE-22, 182 (1986).
    [CrossRef]
  7. M. Yamashita, K. Torizuka, T. Sato, IEEE J. Quantum Electron. QE-23, 2005 (1987).
    [CrossRef]
  8. see, e.g., K. D. Li, W. H. Knox, N. M. Pearson, Opt. Lett. 14, 450 (1989); J. M. Jacobson, K. Naganuma, H. A. Haus, J. G. Fujimoto, A. G. Jacobson, Opt. Lett. 17, 1608 (1992).
    [CrossRef] [PubMed]
  9. R. Szipöcs, K Ferencz, Ch. Spielmann, F. Krausz, Opt. Lett. 19, 201 (1994).
    [CrossRef] [PubMed]
  10. This variation does not include a slight linear decrease in negative GDD with wavelength (i.e., negative cubic dispersion), which helpfully compensates for a significant part of the positive cubic material dispersion in the laser cavity.
  11. Note, however, that more material in the cavity (and consequently more bounces on the dispersive mirrors) will increase the fluctuation of the net GDD with respect to its mean (or nominal) value.

1994

1992

Ch. Spielmann, P. F. Curley, T. Brabec, E. Wintner, F. Krausz, Electron. Lett. 28, 1532 (1992); C. P. Huang, M. T. Asaki, S. Backus, M. M. Murnane, H. C. Kapteyn, H. Nathel, Opt. Lett.1289 (1992); B. Proctor, F. Wise, Opt. Lett. 17, 1295 (1992); B. E. Lemoff, C. P. J. Barty, Opt. Lett. 17, 1367 (1992); P. F. Curley, Ch. Spielmann, T. Brabec, F. Krausz, E. Wintner, A. J. Schmidt, Opt. Lett. 18, 54 (1993); B. Proctor, F. Wise, Appl. Phys. Lett. 62, 470 (1993); M. Asaki, C. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, M. M. Murnane, Opt. Lett. 18, 977 (1993).
[CrossRef] [PubMed]

1991

1989

1987

M. Yamashita, K. Torizuka, T. Sato, IEEE J. Quantum Electron. QE-23, 2005 (1987).
[CrossRef]

1986

J. Kuhl, J. Heppner, IEEE J. Quantum Electron. QE-22, 182 (1986).
[CrossRef]

1984

R. L. Fork, O. E. Martinez, J. P. Gordon, Opt. Lett. 9, (1984).
[CrossRef] [PubMed]

Brabec, T.

Ch. Spielmann, P. F. Curley, T. Brabec, E. Wintner, F. Krausz, Electron. Lett. 28, 1532 (1992); C. P. Huang, M. T. Asaki, S. Backus, M. M. Murnane, H. C. Kapteyn, H. Nathel, Opt. Lett.1289 (1992); B. Proctor, F. Wise, Opt. Lett. 17, 1295 (1992); B. E. Lemoff, C. P. J. Barty, Opt. Lett. 17, 1367 (1992); P. F. Curley, Ch. Spielmann, T. Brabec, F. Krausz, E. Wintner, A. J. Schmidt, Opt. Lett. 18, 54 (1993); B. Proctor, F. Wise, Appl. Phys. Lett. 62, 470 (1993); M. Asaki, C. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, M. M. Murnane, Opt. Lett. 18, 977 (1993).
[CrossRef] [PubMed]

T. Brabec, Ch. Spielmann, F. Krausz, Opt. Lett. 16, 1961 (1991).
[CrossRef] [PubMed]

Ch. Spielmann, P. F. Curley, T. Brabec, F. Krausz, “Ultrabroad-band-femtosecond lasers,”IEEE J. Quantum Electron. (to be published).

Curley, P. F.

Ch. Spielmann, P. F. Curley, T. Brabec, E. Wintner, F. Krausz, Electron. Lett. 28, 1532 (1992); C. P. Huang, M. T. Asaki, S. Backus, M. M. Murnane, H. C. Kapteyn, H. Nathel, Opt. Lett.1289 (1992); B. Proctor, F. Wise, Opt. Lett. 17, 1295 (1992); B. E. Lemoff, C. P. J. Barty, Opt. Lett. 17, 1367 (1992); P. F. Curley, Ch. Spielmann, T. Brabec, F. Krausz, E. Wintner, A. J. Schmidt, Opt. Lett. 18, 54 (1993); B. Proctor, F. Wise, Appl. Phys. Lett. 62, 470 (1993); M. Asaki, C. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, M. M. Murnane, Opt. Lett. 18, 977 (1993).
[CrossRef] [PubMed]

Ch. Spielmann, P. F. Curley, T. Brabec, F. Krausz, “Ultrabroad-band-femtosecond lasers,”IEEE J. Quantum Electron. (to be published).

Ferencz, K

Fork, R. L.

R. L. Fork, O. E. Martinez, J. P. Gordon, Opt. Lett. 9, (1984).
[CrossRef] [PubMed]

Gordon, J. P.

R. L. Fork, O. E. Martinez, J. P. Gordon, Opt. Lett. 9, (1984).
[CrossRef] [PubMed]

Heppner, J.

J. Kuhl, J. Heppner, IEEE J. Quantum Electron. QE-22, 182 (1986).
[CrossRef]

Kean, P. N.

Knox, W. H.

Krausz, F.

R. Szipöcs, K Ferencz, Ch. Spielmann, F. Krausz, Opt. Lett. 19, 201 (1994).
[CrossRef] [PubMed]

Ch. Spielmann, P. F. Curley, T. Brabec, E. Wintner, F. Krausz, Electron. Lett. 28, 1532 (1992); C. P. Huang, M. T. Asaki, S. Backus, M. M. Murnane, H. C. Kapteyn, H. Nathel, Opt. Lett.1289 (1992); B. Proctor, F. Wise, Opt. Lett. 17, 1295 (1992); B. E. Lemoff, C. P. J. Barty, Opt. Lett. 17, 1367 (1992); P. F. Curley, Ch. Spielmann, T. Brabec, F. Krausz, E. Wintner, A. J. Schmidt, Opt. Lett. 18, 54 (1993); B. Proctor, F. Wise, Appl. Phys. Lett. 62, 470 (1993); M. Asaki, C. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, M. M. Murnane, Opt. Lett. 18, 977 (1993).
[CrossRef] [PubMed]

T. Brabec, Ch. Spielmann, F. Krausz, Opt. Lett. 16, 1961 (1991).
[CrossRef] [PubMed]

Ch. Spielmann, P. F. Curley, T. Brabec, F. Krausz, “Ultrabroad-band-femtosecond lasers,”IEEE J. Quantum Electron. (to be published).

Kuhl, J.

J. Kuhl, J. Heppner, IEEE J. Quantum Electron. QE-22, 182 (1986).
[CrossRef]

Li, K. D.

Martinez, O. E.

R. L. Fork, O. E. Martinez, J. P. Gordon, Opt. Lett. 9, (1984).
[CrossRef] [PubMed]

Pearson, N. M.

Sato, T.

M. Yamashita, K. Torizuka, T. Sato, IEEE J. Quantum Electron. QE-23, 2005 (1987).
[CrossRef]

Sibbett, W.

Spence, D. E.

Spielmann, Ch.

R. Szipöcs, K Ferencz, Ch. Spielmann, F. Krausz, Opt. Lett. 19, 201 (1994).
[CrossRef] [PubMed]

Ch. Spielmann, P. F. Curley, T. Brabec, E. Wintner, F. Krausz, Electron. Lett. 28, 1532 (1992); C. P. Huang, M. T. Asaki, S. Backus, M. M. Murnane, H. C. Kapteyn, H. Nathel, Opt. Lett.1289 (1992); B. Proctor, F. Wise, Opt. Lett. 17, 1295 (1992); B. E. Lemoff, C. P. J. Barty, Opt. Lett. 17, 1367 (1992); P. F. Curley, Ch. Spielmann, T. Brabec, F. Krausz, E. Wintner, A. J. Schmidt, Opt. Lett. 18, 54 (1993); B. Proctor, F. Wise, Appl. Phys. Lett. 62, 470 (1993); M. Asaki, C. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, M. M. Murnane, Opt. Lett. 18, 977 (1993).
[CrossRef] [PubMed]

T. Brabec, Ch. Spielmann, F. Krausz, Opt. Lett. 16, 1961 (1991).
[CrossRef] [PubMed]

Ch. Spielmann, P. F. Curley, T. Brabec, F. Krausz, “Ultrabroad-band-femtosecond lasers,”IEEE J. Quantum Electron. (to be published).

Szipöcs, R.

Torizuka, K.

M. Yamashita, K. Torizuka, T. Sato, IEEE J. Quantum Electron. QE-23, 2005 (1987).
[CrossRef]

Wintner, E.

Ch. Spielmann, P. F. Curley, T. Brabec, E. Wintner, F. Krausz, Electron. Lett. 28, 1532 (1992); C. P. Huang, M. T. Asaki, S. Backus, M. M. Murnane, H. C. Kapteyn, H. Nathel, Opt. Lett.1289 (1992); B. Proctor, F. Wise, Opt. Lett. 17, 1295 (1992); B. E. Lemoff, C. P. J. Barty, Opt. Lett. 17, 1367 (1992); P. F. Curley, Ch. Spielmann, T. Brabec, F. Krausz, E. Wintner, A. J. Schmidt, Opt. Lett. 18, 54 (1993); B. Proctor, F. Wise, Appl. Phys. Lett. 62, 470 (1993); M. Asaki, C. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, M. M. Murnane, Opt. Lett. 18, 977 (1993).
[CrossRef] [PubMed]

Yamashita, M.

M. Yamashita, K. Torizuka, T. Sato, IEEE J. Quantum Electron. QE-23, 2005 (1987).
[CrossRef]

Electron. Lett.

Ch. Spielmann, P. F. Curley, T. Brabec, E. Wintner, F. Krausz, Electron. Lett. 28, 1532 (1992); C. P. Huang, M. T. Asaki, S. Backus, M. M. Murnane, H. C. Kapteyn, H. Nathel, Opt. Lett.1289 (1992); B. Proctor, F. Wise, Opt. Lett. 17, 1295 (1992); B. E. Lemoff, C. P. J. Barty, Opt. Lett. 17, 1367 (1992); P. F. Curley, Ch. Spielmann, T. Brabec, F. Krausz, E. Wintner, A. J. Schmidt, Opt. Lett. 18, 54 (1993); B. Proctor, F. Wise, Appl. Phys. Lett. 62, 470 (1993); M. Asaki, C. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, M. M. Murnane, Opt. Lett. 18, 977 (1993).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

J. Kuhl, J. Heppner, IEEE J. Quantum Electron. QE-22, 182 (1986).
[CrossRef]

M. Yamashita, K. Torizuka, T. Sato, IEEE J. Quantum Electron. QE-23, 2005 (1987).
[CrossRef]

Opt. Lett.

Other

Ch. Spielmann, P. F. Curley, T. Brabec, F. Krausz, “Ultrabroad-band-femtosecond lasers,”IEEE J. Quantum Electron. (to be published).

This variation does not include a slight linear decrease in negative GDD with wavelength (i.e., negative cubic dispersion), which helpfully compensates for a significant part of the positive cubic material dispersion in the laser cavity.

Note, however, that more material in the cavity (and consequently more bounces on the dispersive mirrors) will increase the fluctuation of the net GDD with respect to its mean (or nominal) value.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the MDC femtosecond Ti:sapphire (Ti:S) laser. M1, M4–M7, chirped dispersive mirrors described in the text; M2, M3, single-stack λ/4 dichroic mirrors highly transmitting at the pump wavelengths with radii of curvature of 5 cm; OC, 5% output coupler; CP, wedged glass plate compensating for the angular wavelength spread introduced by the output coupler. With a fixed number of bounces on M6 and M7 the extracavity GDD is fine tuned by translation of CP or OC.

Fig. 2
Fig. 2

Fringe-resolved autocorrelation and spectrum (wavelength unit, micrometers) of the femtosecond pulse train generated by the system outlined in Fig. 1. With the exception of the dielectric beam splitter of the autocorrelator, the extracavity beam-steering and focusing optics consist exclusively of Au-coated unprotected mirrors.

Fig. 3
Fig. 3

Overall intracavity GDD (solid curve) versus wavelength for the system illustrated in Fig. 1. This can be compared with the dispersion curve of the same Ti:sapphire laser with a pair of fused-silica prisms (dashed curve). An assumed minimum prism insertion of 4 mm and a required nominal GDD of −80 fs2 yielded a prism separation of 34.4 cm.

Fig. 4
Fig. 4

Fringe-resolved autocorrelation trace and spectrum (wavelength unit, micrometers) of the mode-locked MDC Ti:sapphire laser with mirror M1 (Fig. 1) replaced by a similar dispersive mirror having a slightly lower negative GDD and larger negative cubic dispersion. The resonance spikes indicate roughly the boundaries of the wavelength range where the overall cavity dispersion is negative. The time–bandwidth of product of ≈0.49 implies that the pulses carry some chirp, caused presumably by the finite width of the negative dispersion range.

Metrics