Abstract

A low-insertion-loss, all-single-mode fiber, wavelength-division-multiplexing filter comprising a four-port polished coupler and a strong fiber grating is demonstrated. The device operates in a novel way by a process we call grating-frustrated directional coupling. A fiber grating, present in only one half of the coupler, frustrates the transference of power to the other half within a narrow wavelength range. The performance of a prototype device—a 1535-nm channel-dropping filter with 0.7-nm bandwidth, 70% peak transmission, and 13-dB isolation—shows great promise for wavelength-division-multiplexing and line-filtering applications.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Meltz, W. W. Morey, W. H. Glenn, Opt. Lett. 14, 823 (1989).
    [CrossRef] [PubMed]
  2. J.-L. Archambault, L. Reekie, P. St. J. Russell, Electron. Lett. 29, 28 (1992).
    [CrossRef]
  3. P. J. Lemaire, R. M. Atkins, V. Mizrahi, W. A. Reed, Electron. Lett. 29, 1191 (1993).
    [CrossRef]
  4. H. A. Haus, Y. Lai, J. Lightwave Technol. 10, 57 (1992).
    [CrossRef]
  5. R. Kashyap, G. D. Maxwell, B. J. Ainslie, IEEE Photon. Technol. Lett. 5, 191 (1993).
    [CrossRef]
  6. D. R. Huber, in Eighteenth European Conference on Optical Communication (VDE-Verlag, Berlin, 1992), paper We P2.2.
  7. D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, London, 1991), Chap. 7, pp. 280–293.
  8. M. J. F. Digonnet, H. J. Shaw, IEEE J. Quantum Electron. QE-18, 746 (1982).
    [CrossRef]
  9. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), Chap. 18, p. 399.

1993 (2)

P. J. Lemaire, R. M. Atkins, V. Mizrahi, W. A. Reed, Electron. Lett. 29, 1191 (1993).
[CrossRef]

R. Kashyap, G. D. Maxwell, B. J. Ainslie, IEEE Photon. Technol. Lett. 5, 191 (1993).
[CrossRef]

1992 (2)

H. A. Haus, Y. Lai, J. Lightwave Technol. 10, 57 (1992).
[CrossRef]

J.-L. Archambault, L. Reekie, P. St. J. Russell, Electron. Lett. 29, 28 (1992).
[CrossRef]

1989 (1)

1982 (1)

M. J. F. Digonnet, H. J. Shaw, IEEE J. Quantum Electron. QE-18, 746 (1982).
[CrossRef]

Ainslie, B. J.

R. Kashyap, G. D. Maxwell, B. J. Ainslie, IEEE Photon. Technol. Lett. 5, 191 (1993).
[CrossRef]

Archambault, J.-L.

J.-L. Archambault, L. Reekie, P. St. J. Russell, Electron. Lett. 29, 28 (1992).
[CrossRef]

Atkins, R. M.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, W. A. Reed, Electron. Lett. 29, 1191 (1993).
[CrossRef]

Digonnet, M. J. F.

M. J. F. Digonnet, H. J. Shaw, IEEE J. Quantum Electron. QE-18, 746 (1982).
[CrossRef]

Glenn, W. H.

Haus, H. A.

H. A. Haus, Y. Lai, J. Lightwave Technol. 10, 57 (1992).
[CrossRef]

Huber, D. R.

D. R. Huber, in Eighteenth European Conference on Optical Communication (VDE-Verlag, Berlin, 1992), paper We P2.2.

Kashyap, R.

R. Kashyap, G. D. Maxwell, B. J. Ainslie, IEEE Photon. Technol. Lett. 5, 191 (1993).
[CrossRef]

Lai, Y.

H. A. Haus, Y. Lai, J. Lightwave Technol. 10, 57 (1992).
[CrossRef]

Lemaire, P. J.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, W. A. Reed, Electron. Lett. 29, 1191 (1993).
[CrossRef]

Love, J. D.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), Chap. 18, p. 399.

Marcuse, D.

D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, London, 1991), Chap. 7, pp. 280–293.

Maxwell, G. D.

R. Kashyap, G. D. Maxwell, B. J. Ainslie, IEEE Photon. Technol. Lett. 5, 191 (1993).
[CrossRef]

Meltz, G.

Mizrahi, V.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, W. A. Reed, Electron. Lett. 29, 1191 (1993).
[CrossRef]

Morey, W. W.

Reed, W. A.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, W. A. Reed, Electron. Lett. 29, 1191 (1993).
[CrossRef]

Reekie, L.

J.-L. Archambault, L. Reekie, P. St. J. Russell, Electron. Lett. 29, 28 (1992).
[CrossRef]

Russell, P. St. J.

J.-L. Archambault, L. Reekie, P. St. J. Russell, Electron. Lett. 29, 28 (1992).
[CrossRef]

Shaw, H. J.

M. J. F. Digonnet, H. J. Shaw, IEEE J. Quantum Electron. QE-18, 746 (1982).
[CrossRef]

Snyder, A. W.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), Chap. 18, p. 399.

Electron. Lett. (2)

J.-L. Archambault, L. Reekie, P. St. J. Russell, Electron. Lett. 29, 28 (1992).
[CrossRef]

P. J. Lemaire, R. M. Atkins, V. Mizrahi, W. A. Reed, Electron. Lett. 29, 1191 (1993).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. J. F. Digonnet, H. J. Shaw, IEEE J. Quantum Electron. QE-18, 746 (1982).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

R. Kashyap, G. D. Maxwell, B. J. Ainslie, IEEE Photon. Technol. Lett. 5, 191 (1993).
[CrossRef]

J. Lightwave Technol. (1)

H. A. Haus, Y. Lai, J. Lightwave Technol. 10, 57 (1992).
[CrossRef]

Opt. Lett. (1)

Other (3)

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), Chap. 18, p. 399.

D. R. Huber, in Eighteenth European Conference on Optical Communication (VDE-Verlag, Berlin, 1992), paper We P2.2.

D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, London, 1991), Chap. 7, pp. 280–293.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of a grating-frustrated coupler, comprising two fibers, 1 and 2, in a coupler configuration (LC is the effective coupler length). Fiber 2 contains a Bragg grating of length LG.

Fig. 2
Fig. 2

Dependence of the four outputs on grating strength at the Bragg wavelength and for two grating lengths for (a) transmission and (b) reflection.

Fig. 3
Fig. 3

Calculated reflection and transmission spectra for LC = 2.5 mm, LG = 4.5 mm, nav = 1.45, δn = 6 × 10−4, and λB = 1534.7 nm.

Fig. 4
Fig. 4

Measured reflection and transmission spectra of an all-fiber grating-frustrated coupler.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P = 1 1 + ( 2 Δ n av L C / λ ) 2

Metrics