Abstract

The dual-beam (pump, probe) time-resolved Z-scan technique is used to study the thermal changes in refractive index that are due to one- and two-photon absorption in organic solvents. The time resolution enabled us to select a pure thermal signal and to measure absolute variations as small as 10−6 that were due to heating. Gaussian approximation was used for the pump and probe beams to fit experimental and calculated model dependencies.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Vickers, C. K. Mamn, C. H. Tseng, Appl. Spectrosc. 46, 1200 (1992).
    [Crossref]
  2. A. J. Twarokwski, A. S. Kliger, Chem. Phys. 20, 253 (1977).
    [Crossref]
  3. M. Sheik-Bahae, A. A. Said, E. W. Van Stryland, Opt. Lett. 14, 955 (1989).
    [Crossref] [PubMed]
  4. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
    [Crossref]
  5. H. Ma, A. S. L. Gomes, C. B. de Araújo, Appl. Phys. Lett. 59, 2666 (1991).
    [Crossref]
  6. M. Sheik-Bahae, J. Wang, R. De Salvo, D. J. Hagan, E. W. Van Stryland, Opt. Lett. 17, 258 (1992).
    [Crossref] [PubMed]
  7. D. Weaire, B. S. Wherrett, D. A. B. Miller, S. D. Smith, Opt. Lett. 9, 331 (1984).

1992 (2)

1991 (1)

H. Ma, A. S. L. Gomes, C. B. de Araújo, Appl. Phys. Lett. 59, 2666 (1991).
[Crossref]

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[Crossref]

1989 (1)

1984 (1)

D. Weaire, B. S. Wherrett, D. A. B. Miller, S. D. Smith, Opt. Lett. 9, 331 (1984).

1977 (1)

A. J. Twarokwski, A. S. Kliger, Chem. Phys. 20, 253 (1977).
[Crossref]

de Araújo, C. B.

H. Ma, A. S. L. Gomes, C. B. de Araújo, Appl. Phys. Lett. 59, 2666 (1991).
[Crossref]

De Salvo, R.

Gomes, A. S. L.

H. Ma, A. S. L. Gomes, C. B. de Araújo, Appl. Phys. Lett. 59, 2666 (1991).
[Crossref]

Hagan, D. J.

M. Sheik-Bahae, J. Wang, R. De Salvo, D. J. Hagan, E. W. Van Stryland, Opt. Lett. 17, 258 (1992).
[Crossref] [PubMed]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[Crossref]

Kliger, A. S.

A. J. Twarokwski, A. S. Kliger, Chem. Phys. 20, 253 (1977).
[Crossref]

Ma, H.

H. Ma, A. S. L. Gomes, C. B. de Araújo, Appl. Phys. Lett. 59, 2666 (1991).
[Crossref]

Mamn, C. K.

Miller, D. A. B.

D. Weaire, B. S. Wherrett, D. A. B. Miller, S. D. Smith, Opt. Lett. 9, 331 (1984).

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[Crossref]

M. Sheik-Bahae, A. A. Said, E. W. Van Stryland, Opt. Lett. 14, 955 (1989).
[Crossref] [PubMed]

Sheik-Bahae, M.

Smith, S. D.

D. Weaire, B. S. Wherrett, D. A. B. Miller, S. D. Smith, Opt. Lett. 9, 331 (1984).

Tseng, C. H.

Twarokwski, A. J.

A. J. Twarokwski, A. S. Kliger, Chem. Phys. 20, 253 (1977).
[Crossref]

Van Stryland, E. W.

Vickers, T. J.

Wang, J.

Weaire, D.

D. Weaire, B. S. Wherrett, D. A. B. Miller, S. D. Smith, Opt. Lett. 9, 331 (1984).

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[Crossref]

Wherrett, B. S.

D. Weaire, B. S. Wherrett, D. A. B. Miller, S. D. Smith, Opt. Lett. 9, 331 (1984).

Appl. Phys. Lett. (1)

H. Ma, A. S. L. Gomes, C. B. de Araújo, Appl. Phys. Lett. 59, 2666 (1991).
[Crossref]

Appl. Spectrosc. (1)

Chem. Phys. (1)

A. J. Twarokwski, A. S. Kliger, Chem. Phys. 20, 253 (1977).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[Crossref]

Opt. Lett. (3)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Typical thermal lensing of cw probe radiation produced from the absorption of a nanosecond pump pulse. ΔI is the maximum measured thermal signal, and I(∞) is the signal without phase distortion.

Fig. 2
Fig. 2

Calculated Z-scan dependencies for different confocal parameters of probe beams (z0) when the thermal phase shift ΔΦ0 that is due to linear absorption is constant.

Fig. 3
Fig. 3

Measured (points) and calculated (solid curve) two-color Z scan for thermally induced changes in refractive index because of linear absorption of 1.064-μm radiation in toluene.

Fig. 4
Fig. 4

Measured (points) and calculated (dashed curve) two-color Z scan for thermally induced changes in refractive index caused by two-photon absorption of 0.532-μm radiation in toluene.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E ( z , r , t ) = E 0 ( t ) w 0 w ( z ) exp [ r 2 w ( z ) 2 i π r 2 λ 0 R ( z ) ] ,
d d z ( Δ Φ ) = k Δ n ( I p ) ,
I ( r , t ) = W ( t ) p 0 p ( x ) exp [ 2 π r 2 λ p ( x ) ] ,
I 2 ( r , t ) = W 2 ( t ) p 0 p ( x ) exp [ 2 π r 2 ( λ / 2 ) p ( x ) ] .
Δ Φ ( x , r , t ) = Δ Φ 0 ( t ) [ p 0 p ( x ) ] n exp [ 2 π r 2 λ p ( x ) n 2 ] ,
E e ( x , r , t ) = E ( x , r , t ) exp [ i Δ Φ ( x , r , t ) ] .
exp [ i Δ Φ ( x , r , t ) ] = m = 0 [ i Δ Φ 0 ( t ) ] m m ! ( 1 + x 2 / p 0 2 ) n m × exp [ 2 π r 2 λ p ( x ) n 2 m ] .
S ( x , Δ Φ ) = F ( x , Δ Φ ) F ( x , Δ Φ = 0 ) F ( x , Δ Φ = 0 ) ,

Metrics