Abstract

A near-field scanning optical microscope with a metallic probe tip was developed for detecting localized photons near the surface of the fine structure of a sample. In this microscope a metallic probe is used for converting the evanescent photons localized near the sample surface to the propagating scattering light wave; the scattered light is detected in the far field with external condenser optics. During the measurement the probe tip vibrates normal to the surface with an amplitude of ~5 nm at 2.5 kHz, and the light intensity modulated with this frequency is lock-in detected. This operation permits the removal of stray-light noise contribution. Experimental results of the measurements of the exponential decay of the evanescent field produced by total internal reflection are given with and without the probe vibration. Image data of the surface profile of an optical compact disk are also shown.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Pohl, W. Denk, M. Lanz, Appl. Phys. Lett. 44, 651 (1984).
    [CrossRef]
  2. A. Lewis, M. Isaacson, A. Harootunian, A. Muray, Ultramicroscopy 13, 227 (1984).
    [CrossRef]
  3. E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, Biophys. J. 49, 269 (1986).
    [CrossRef] [PubMed]
  4. D. Courjon, K. Sarayeddine, M. Spajer, Opt. Commun. 71, 23 (1989).
    [CrossRef]
  5. R. C. Reddick, R. J. Warmack, T. L. Ferrell, Phys. Rev. B 39, 767 (1989).
    [CrossRef]
  6. S. Jiang, N. Tomita, K. Nakagawa, M. Ohtsu, in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper CThO5.
  7. A. Yariv, Optical Electronics, 4th ed. (Saunders, New York, 1991), Chap. 3, p. 73.
  8. M. Specht, J. D. Pedarnig, W. M. Heckl, T. W. Hänsch, Phys. Rev. Lett. 68, 476 (1992).
    [CrossRef] [PubMed]
  9. R. K. Chang, T. E. Furtak, eds., Surface Enhanced Raman Scattering (Plenum, New York, 1982).
    [CrossRef]
  10. J. Wessel, J. Opt. Soc. Am. B 2, 1538 (1985).
    [CrossRef]

1992 (1)

M. Specht, J. D. Pedarnig, W. M. Heckl, T. W. Hänsch, Phys. Rev. Lett. 68, 476 (1992).
[CrossRef] [PubMed]

1989 (2)

D. Courjon, K. Sarayeddine, M. Spajer, Opt. Commun. 71, 23 (1989).
[CrossRef]

R. C. Reddick, R. J. Warmack, T. L. Ferrell, Phys. Rev. B 39, 767 (1989).
[CrossRef]

1986 (1)

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, Biophys. J. 49, 269 (1986).
[CrossRef] [PubMed]

1985 (1)

1984 (2)

D. W. Pohl, W. Denk, M. Lanz, Appl. Phys. Lett. 44, 651 (1984).
[CrossRef]

A. Lewis, M. Isaacson, A. Harootunian, A. Muray, Ultramicroscopy 13, 227 (1984).
[CrossRef]

Betzig, E.

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, Biophys. J. 49, 269 (1986).
[CrossRef] [PubMed]

Courjon, D.

D. Courjon, K. Sarayeddine, M. Spajer, Opt. Commun. 71, 23 (1989).
[CrossRef]

Denk, W.

D. W. Pohl, W. Denk, M. Lanz, Appl. Phys. Lett. 44, 651 (1984).
[CrossRef]

Ferrell, T. L.

R. C. Reddick, R. J. Warmack, T. L. Ferrell, Phys. Rev. B 39, 767 (1989).
[CrossRef]

Hänsch, T. W.

M. Specht, J. D. Pedarnig, W. M. Heckl, T. W. Hänsch, Phys. Rev. Lett. 68, 476 (1992).
[CrossRef] [PubMed]

Harootunian, A.

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, Biophys. J. 49, 269 (1986).
[CrossRef] [PubMed]

A. Lewis, M. Isaacson, A. Harootunian, A. Muray, Ultramicroscopy 13, 227 (1984).
[CrossRef]

Heckl, W. M.

M. Specht, J. D. Pedarnig, W. M. Heckl, T. W. Hänsch, Phys. Rev. Lett. 68, 476 (1992).
[CrossRef] [PubMed]

Isaacson, M.

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, Biophys. J. 49, 269 (1986).
[CrossRef] [PubMed]

A. Lewis, M. Isaacson, A. Harootunian, A. Muray, Ultramicroscopy 13, 227 (1984).
[CrossRef]

Jiang, S.

S. Jiang, N. Tomita, K. Nakagawa, M. Ohtsu, in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper CThO5.

Kratschmer, E.

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, Biophys. J. 49, 269 (1986).
[CrossRef] [PubMed]

Lanz, M.

D. W. Pohl, W. Denk, M. Lanz, Appl. Phys. Lett. 44, 651 (1984).
[CrossRef]

Lewis, A.

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, Biophys. J. 49, 269 (1986).
[CrossRef] [PubMed]

A. Lewis, M. Isaacson, A. Harootunian, A. Muray, Ultramicroscopy 13, 227 (1984).
[CrossRef]

Muray, A.

A. Lewis, M. Isaacson, A. Harootunian, A. Muray, Ultramicroscopy 13, 227 (1984).
[CrossRef]

Nakagawa, K.

S. Jiang, N. Tomita, K. Nakagawa, M. Ohtsu, in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper CThO5.

Ohtsu, M.

S. Jiang, N. Tomita, K. Nakagawa, M. Ohtsu, in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper CThO5.

Pedarnig, J. D.

M. Specht, J. D. Pedarnig, W. M. Heckl, T. W. Hänsch, Phys. Rev. Lett. 68, 476 (1992).
[CrossRef] [PubMed]

Pohl, D. W.

D. W. Pohl, W. Denk, M. Lanz, Appl. Phys. Lett. 44, 651 (1984).
[CrossRef]

Reddick, R. C.

R. C. Reddick, R. J. Warmack, T. L. Ferrell, Phys. Rev. B 39, 767 (1989).
[CrossRef]

Sarayeddine, K.

D. Courjon, K. Sarayeddine, M. Spajer, Opt. Commun. 71, 23 (1989).
[CrossRef]

Spajer, M.

D. Courjon, K. Sarayeddine, M. Spajer, Opt. Commun. 71, 23 (1989).
[CrossRef]

Specht, M.

M. Specht, J. D. Pedarnig, W. M. Heckl, T. W. Hänsch, Phys. Rev. Lett. 68, 476 (1992).
[CrossRef] [PubMed]

Tomita, N.

S. Jiang, N. Tomita, K. Nakagawa, M. Ohtsu, in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper CThO5.

Warmack, R. J.

R. C. Reddick, R. J. Warmack, T. L. Ferrell, Phys. Rev. B 39, 767 (1989).
[CrossRef]

Wessel, J.

Yariv, A.

A. Yariv, Optical Electronics, 4th ed. (Saunders, New York, 1991), Chap. 3, p. 73.

Appl. Phys. Lett. (1)

D. W. Pohl, W. Denk, M. Lanz, Appl. Phys. Lett. 44, 651 (1984).
[CrossRef]

Biophys. J. (1)

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, Biophys. J. 49, 269 (1986).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

D. Courjon, K. Sarayeddine, M. Spajer, Opt. Commun. 71, 23 (1989).
[CrossRef]

Phys. Rev. B (1)

R. C. Reddick, R. J. Warmack, T. L. Ferrell, Phys. Rev. B 39, 767 (1989).
[CrossRef]

Phys. Rev. Lett. (1)

M. Specht, J. D. Pedarnig, W. M. Heckl, T. W. Hänsch, Phys. Rev. Lett. 68, 476 (1992).
[CrossRef] [PubMed]

Ultramicroscopy (1)

A. Lewis, M. Isaacson, A. Harootunian, A. Muray, Ultramicroscopy 13, 227 (1984).
[CrossRef]

Other (3)

R. K. Chang, T. E. Furtak, eds., Surface Enhanced Raman Scattering (Plenum, New York, 1982).
[CrossRef]

S. Jiang, N. Tomita, K. Nakagawa, M. Ohtsu, in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper CThO5.

A. Yariv, Optical Electronics, 4th ed. (Saunders, New York, 1991), Chap. 3, p. 73.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Calculated scattering efficiency for a Rayleigh particle as a function of refractive index n and extinction coefficient κ.

Fig. 2
Fig. 2

Optical setup of the NSOM with a metallic tip. LD, laser diode; PMT, photomultiplier tube.

Fig. 3
Fig. 3

(a) Photograph of a probe tip shining in the evanescent field and (b) the tip illuminated by an external light; reflection of the tip is visible as the reflection.

Fig. 4
Fig. 4

Experimental results of the light intensity as a function of the distance between the tip and the surface (a) with tip vibration (2.5 kHz) and lock-in detection and (b) without tip vibration but laser-diode flickering (2.5 kHz) instead. The sample was BK-7 glass with a precision of λ/4.

Fig. 5
Fig. 5

Same as in Fig. 4, except that the sample is a rough surface giving a large amount of scattering in detection (a) with and (b) without the probe-vibration technique.

Fig. 6
Fig. 6

Experimental results of surface profiling of a compact disk with a pit interval of 1.6 μm and a pit width of 0.5 μm. (the dashed curve represents the ideal pit geometry).

Metrics