Abstract

The presence of glucose dissolved in an aqueous solution increases the refractive index of the solution and therefore has an influence on the scattering properties of any particles suspended within it. We present experimental data on the effect of glucose concentration on the scattering coefficient of a suspension of spherical polystyrene particles. The experimental results are in good agreement with Mie theory. The effect of glucose on light transport in highly scattering, tissue-simulating phantoms is demonstrated both experimentally and theoretically by application of diffusion theory. The possible application of this effect for noninvasive glucose monitoring of diabetic patients is discussed.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. B. Helms, Diabetes Care 15(Suppl. 1), 6 (1992).
    [PubMed]
  2. DCCT Research GroupDiabetes Care 10(1), 1 (1987).
  3. G. S. Wilson, Y. Zhang, G. Reach, D. Moatti-Sirat, V. Poitout, D. R. Thevenot, F. Lemonnier, J.-C. Klein, Clin. Chem. 38, 1613 (1992).
    [PubMed]
  4. M. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, Clin. Chem. 38, 1618 (1992).
    [PubMed]
  5. R. Marbach, Th. Koschinsky, F. A. Gries, H. M. Heise, Appl. Spectrosc. 47, 875 (1993).
    [CrossRef]
  6. J. Simonsen, D. Boekker, “Process and device for glucose determination in a biological matrix,”UK patent WO94/10901 (May26, 1994).
  7. R. C. Weast, CRC Handbook of Chemistry and Physics, 55th ed. (CRC, Cleveland, Ohio, 1974), p. D-205.
  8. S. Arridge, M. Cope, D. T. Delpy, Phys. Med. Biol. 37, 1531 (1992).
    [CrossRef] [PubMed]
  9. M. Firband, M. Hiraoka, M. Essenpreis, D. T. Delpy, Phys. Med. Biol. 38, 503 (1993).
    [CrossRef]
  10. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), pp. 475–482.
  11. Polystyrene microspheres provided by B. Harness, Department of Chemical Engineering, University of Bradford, Bradford, UK.
  12. T. J. Farrell, M. S. Patterson, Med. Phys. 19, 879 (1992).
    [CrossRef] [PubMed]
  13. K. F. A. Ross, Phase Contrast and Interference Microscopy for Cell Biologists (Arnold, London, 1967), Chap. 7, p. 166.
  14. J. Maier, S. Walker, S. Fantini, M. Franceschini, E. Gratton, Opt. Lett. 19, 2062 (1994).
    [CrossRef] [PubMed]

1994 (1)

1993 (2)

R. Marbach, Th. Koschinsky, F. A. Gries, H. M. Heise, Appl. Spectrosc. 47, 875 (1993).
[CrossRef]

M. Firband, M. Hiraoka, M. Essenpreis, D. T. Delpy, Phys. Med. Biol. 38, 503 (1993).
[CrossRef]

1992 (5)

T. J. Farrell, M. S. Patterson, Med. Phys. 19, 879 (1992).
[CrossRef] [PubMed]

S. Arridge, M. Cope, D. T. Delpy, Phys. Med. Biol. 37, 1531 (1992).
[CrossRef] [PubMed]

R. B. Helms, Diabetes Care 15(Suppl. 1), 6 (1992).
[PubMed]

G. S. Wilson, Y. Zhang, G. Reach, D. Moatti-Sirat, V. Poitout, D. R. Thevenot, F. Lemonnier, J.-C. Klein, Clin. Chem. 38, 1613 (1992).
[PubMed]

M. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, Clin. Chem. 38, 1618 (1992).
[PubMed]

1987 (1)

DCCT Research GroupDiabetes Care 10(1), 1 (1987).

Arridge, S.

S. Arridge, M. Cope, D. T. Delpy, Phys. Med. Biol. 37, 1531 (1992).
[CrossRef] [PubMed]

Boekker, D.

J. Simonsen, D. Boekker, “Process and device for glucose determination in a biological matrix,”UK patent WO94/10901 (May26, 1994).

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), pp. 475–482.

Cope, M.

S. Arridge, M. Cope, D. T. Delpy, Phys. Med. Biol. 37, 1531 (1992).
[CrossRef] [PubMed]

Delpy, D. T.

M. Firband, M. Hiraoka, M. Essenpreis, D. T. Delpy, Phys. Med. Biol. 38, 503 (1993).
[CrossRef]

S. Arridge, M. Cope, D. T. Delpy, Phys. Med. Biol. 37, 1531 (1992).
[CrossRef] [PubMed]

Eaton, R. P.

M. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, Clin. Chem. 38, 1618 (1992).
[PubMed]

Essenpreis, M.

M. Firband, M. Hiraoka, M. Essenpreis, D. T. Delpy, Phys. Med. Biol. 38, 503 (1993).
[CrossRef]

Fantini, S.

Farrell, T. J.

T. J. Farrell, M. S. Patterson, Med. Phys. 19, 879 (1992).
[CrossRef] [PubMed]

Firband, M.

M. Firband, M. Hiraoka, M. Essenpreis, D. T. Delpy, Phys. Med. Biol. 38, 503 (1993).
[CrossRef]

Franceschini, M.

Gratton, E.

Gries, F. A.

Haaland, D. M.

M. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, Clin. Chem. 38, 1618 (1992).
[PubMed]

Heise, H. M.

Helms, R. B.

R. B. Helms, Diabetes Care 15(Suppl. 1), 6 (1992).
[PubMed]

Hiraoka, M.

M. Firband, M. Hiraoka, M. Essenpreis, D. T. Delpy, Phys. Med. Biol. 38, 503 (1993).
[CrossRef]

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), pp. 475–482.

Klein, J.-C.

G. S. Wilson, Y. Zhang, G. Reach, D. Moatti-Sirat, V. Poitout, D. R. Thevenot, F. Lemonnier, J.-C. Klein, Clin. Chem. 38, 1613 (1992).
[PubMed]

Koepp, G. W.

M. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, Clin. Chem. 38, 1618 (1992).
[PubMed]

Koschinsky, Th.

Lemonnier, F.

G. S. Wilson, Y. Zhang, G. Reach, D. Moatti-Sirat, V. Poitout, D. R. Thevenot, F. Lemonnier, J.-C. Klein, Clin. Chem. 38, 1613 (1992).
[PubMed]

Maier, J.

Marbach, R.

Moatti-Sirat, D.

G. S. Wilson, Y. Zhang, G. Reach, D. Moatti-Sirat, V. Poitout, D. R. Thevenot, F. Lemonnier, J.-C. Klein, Clin. Chem. 38, 1613 (1992).
[PubMed]

Patterson, M. S.

T. J. Farrell, M. S. Patterson, Med. Phys. 19, 879 (1992).
[CrossRef] [PubMed]

Poitout, V.

G. S. Wilson, Y. Zhang, G. Reach, D. Moatti-Sirat, V. Poitout, D. R. Thevenot, F. Lemonnier, J.-C. Klein, Clin. Chem. 38, 1613 (1992).
[PubMed]

Reach, G.

G. S. Wilson, Y. Zhang, G. Reach, D. Moatti-Sirat, V. Poitout, D. R. Thevenot, F. Lemonnier, J.-C. Klein, Clin. Chem. 38, 1613 (1992).
[PubMed]

Robinson, M.

M. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, Clin. Chem. 38, 1618 (1992).
[PubMed]

Robinson, P. L.

M. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, Clin. Chem. 38, 1618 (1992).
[PubMed]

Ross, K. F. A.

K. F. A. Ross, Phase Contrast and Interference Microscopy for Cell Biologists (Arnold, London, 1967), Chap. 7, p. 166.

Simonsen, J.

J. Simonsen, D. Boekker, “Process and device for glucose determination in a biological matrix,”UK patent WO94/10901 (May26, 1994).

Stallard, B. R.

M. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, Clin. Chem. 38, 1618 (1992).
[PubMed]

Thevenot, D. R.

G. S. Wilson, Y. Zhang, G. Reach, D. Moatti-Sirat, V. Poitout, D. R. Thevenot, F. Lemonnier, J.-C. Klein, Clin. Chem. 38, 1613 (1992).
[PubMed]

Thomas, E. V.

M. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, Clin. Chem. 38, 1618 (1992).
[PubMed]

Walker, S.

Wilson, G. S.

G. S. Wilson, Y. Zhang, G. Reach, D. Moatti-Sirat, V. Poitout, D. R. Thevenot, F. Lemonnier, J.-C. Klein, Clin. Chem. 38, 1613 (1992).
[PubMed]

Zhang, Y.

G. S. Wilson, Y. Zhang, G. Reach, D. Moatti-Sirat, V. Poitout, D. R. Thevenot, F. Lemonnier, J.-C. Klein, Clin. Chem. 38, 1613 (1992).
[PubMed]

Appl. Spectrosc. (1)

Clin. Chem. (2)

G. S. Wilson, Y. Zhang, G. Reach, D. Moatti-Sirat, V. Poitout, D. R. Thevenot, F. Lemonnier, J.-C. Klein, Clin. Chem. 38, 1613 (1992).
[PubMed]

M. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, Clin. Chem. 38, 1618 (1992).
[PubMed]

Diabetes Care (2)

R. B. Helms, Diabetes Care 15(Suppl. 1), 6 (1992).
[PubMed]

DCCT Research GroupDiabetes Care 10(1), 1 (1987).

Med. Phys. (1)

T. J. Farrell, M. S. Patterson, Med. Phys. 19, 879 (1992).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Med. Biol. (2)

S. Arridge, M. Cope, D. T. Delpy, Phys. Med. Biol. 37, 1531 (1992).
[CrossRef] [PubMed]

M. Firband, M. Hiraoka, M. Essenpreis, D. T. Delpy, Phys. Med. Biol. 38, 503 (1993).
[CrossRef]

Other (5)

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), pp. 475–482.

Polystyrene microspheres provided by B. Harness, Department of Chemical Engineering, University of Bradford, Bradford, UK.

K. F. A. Ross, Phase Contrast and Interference Microscopy for Cell Biologists (Arnold, London, 1967), Chap. 7, p. 166.

J. Simonsen, D. Boekker, “Process and device for glucose determination in a biological matrix,”UK patent WO94/10901 (May26, 1994).

R. C. Weast, CRC Handbook of Chemistry and Physics, 55th ed. (CRC, Cleveland, Ohio, 1974), p. D-205.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Fractional change of the scattering coefficient δgμs(cg) = 2[μs(cg) − μs(cg = 0 mM)]/[μs(cg) + μs(cg = 0 mM)] of an aqueous suspension (cg = 0.0019% vol./vol.) of polystyrene spherical particles (diameter 1.27 μm) for glucose concentrations of 85 and 144 mM. The solid curves depict δgμs calculated from Mie theory for a change in the refractive index of the solution corresponding to the glucose concentrations used.

Fig. 2
Fig. 2

Ratio of the transmitted intensities for zero glucose concentration and cg = 200 mM through an aqueous suspension of polystyrene spherical particles (4 μm < d <7 μm, cs = 0.968% vol./vol.) of 20-mm path length. The experimental data (dotted curve) are compared with diffusion theory that takes into account the change δgμs (dashed curve) and the changes of both the scattering and the absorption coefficients (solid curve).

Fig. 3
Fig. 3

Fractional change δgμs as function of the refractive index of the sphere ns calculated from Mie theory for spherical particles of diameter d = 1 μm. and λ = 700 nm and a change in the refractive index of the medium of Δnm = 0.0025 corresponding to cg = 100 mM glucose concentration. nm was assumed to be either 1.33 or 1.36.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

μ t ( λ ) = μ a ( λ ) + μ s ( λ ) = 1 / z ln [ I 0 ( λ ) / I ( λ ) ] ,

Metrics