Abstract

A new method of coupling from a single-mode fiber to a thin-film waveguide through a coupling fiber is reported. This method provides high coupling efficiency, whereby the coupling fiber helps to match the coupling conditions. Experimentally the maximum coupling efficiency of 78% was obtained by use of a polymeric thin-film waveguide, in which propagation loss of the film and other coupling losses were excluded. The system also provides the means to measure characteristics of the polymeric films.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. L. Booth, J. Lightwave Technol. 7, 1445 (1989).
    [CrossRef]
  2. M. Zhang, E. Garmire, J. Lightwave Technol. LT-5, 260 (1987).
    [CrossRef]
  3. Y. Cai, T. Mizumoto, Y. Naito, J. Lightwave Technol. 9, 577 (1990).
    [CrossRef]
  4. Y. Cai, T. Mizumoto, Y. Naito, J. Lightwave Technol. 8, 90 (1990).
    [CrossRef]
  5. H. Kogelnik, V. Ramaswamy, Appl. Opt. 13, 1857 (1974).
    [CrossRef] [PubMed]
  6. A. K. Das, S. Bhattacharjee, J. Lightwave Technol. LT-3, 83 (1985).
    [CrossRef]
  7. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).
  8. A. Yariv, IEEE J. Quantum Electron. QE-9, 919 (1973).
    [CrossRef]
  9. M. J. F. Digonnet, H. J. Shaw, IEEE J. Quantum Electron. QE-18, 746 (1982).
    [CrossRef]
  10. A. K. Das, M. A. Mondal, A. Mukherjee, A. K. Mondal, Opt. Lett. 19, 384 (1994).
    [PubMed]
  11. L. A. Hornak, ed., Polymers for Lightwave and Integrated Optics (Dekker, New York, 1992), p. 405.
  12. T. Kardinahl, Appl. Opt. 31, 4198 (1992).
    [CrossRef] [PubMed]

1994 (1)

1992 (1)

1990 (2)

Y. Cai, T. Mizumoto, Y. Naito, J. Lightwave Technol. 9, 577 (1990).
[CrossRef]

Y. Cai, T. Mizumoto, Y. Naito, J. Lightwave Technol. 8, 90 (1990).
[CrossRef]

1989 (1)

B. L. Booth, J. Lightwave Technol. 7, 1445 (1989).
[CrossRef]

1987 (1)

M. Zhang, E. Garmire, J. Lightwave Technol. LT-5, 260 (1987).
[CrossRef]

1985 (1)

A. K. Das, S. Bhattacharjee, J. Lightwave Technol. LT-3, 83 (1985).
[CrossRef]

1982 (1)

M. J. F. Digonnet, H. J. Shaw, IEEE J. Quantum Electron. QE-18, 746 (1982).
[CrossRef]

1974 (1)

1973 (1)

A. Yariv, IEEE J. Quantum Electron. QE-9, 919 (1973).
[CrossRef]

Bhattacharjee, S.

A. K. Das, S. Bhattacharjee, J. Lightwave Technol. LT-3, 83 (1985).
[CrossRef]

Booth, B. L.

B. L. Booth, J. Lightwave Technol. 7, 1445 (1989).
[CrossRef]

Cai, Y.

Y. Cai, T. Mizumoto, Y. Naito, J. Lightwave Technol. 9, 577 (1990).
[CrossRef]

Y. Cai, T. Mizumoto, Y. Naito, J. Lightwave Technol. 8, 90 (1990).
[CrossRef]

Das, A. K.

A. K. Das, M. A. Mondal, A. Mukherjee, A. K. Mondal, Opt. Lett. 19, 384 (1994).
[PubMed]

A. K. Das, S. Bhattacharjee, J. Lightwave Technol. LT-3, 83 (1985).
[CrossRef]

Digonnet, M. J. F.

M. J. F. Digonnet, H. J. Shaw, IEEE J. Quantum Electron. QE-18, 746 (1982).
[CrossRef]

Garmire, E.

M. Zhang, E. Garmire, J. Lightwave Technol. LT-5, 260 (1987).
[CrossRef]

Kardinahl, T.

Kogelnik, H.

Love, J. D.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).

Mizumoto, T.

Y. Cai, T. Mizumoto, Y. Naito, J. Lightwave Technol. 8, 90 (1990).
[CrossRef]

Y. Cai, T. Mizumoto, Y. Naito, J. Lightwave Technol. 9, 577 (1990).
[CrossRef]

Mondal, A. K.

Mondal, M. A.

Mukherjee, A.

Naito, Y.

Y. Cai, T. Mizumoto, Y. Naito, J. Lightwave Technol. 9, 577 (1990).
[CrossRef]

Y. Cai, T. Mizumoto, Y. Naito, J. Lightwave Technol. 8, 90 (1990).
[CrossRef]

Ramaswamy, V.

Shaw, H. J.

M. J. F. Digonnet, H. J. Shaw, IEEE J. Quantum Electron. QE-18, 746 (1982).
[CrossRef]

Snyder, A. W.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).

Yariv, A.

A. Yariv, IEEE J. Quantum Electron. QE-9, 919 (1973).
[CrossRef]

Zhang, M.

M. Zhang, E. Garmire, J. Lightwave Technol. LT-5, 260 (1987).
[CrossRef]

Appl. Opt. (2)

IEEE J. Quantum Electron. (2)

A. Yariv, IEEE J. Quantum Electron. QE-9, 919 (1973).
[CrossRef]

M. J. F. Digonnet, H. J. Shaw, IEEE J. Quantum Electron. QE-18, 746 (1982).
[CrossRef]

J. Lightwave Technol. (5)

B. L. Booth, J. Lightwave Technol. 7, 1445 (1989).
[CrossRef]

M. Zhang, E. Garmire, J. Lightwave Technol. LT-5, 260 (1987).
[CrossRef]

Y. Cai, T. Mizumoto, Y. Naito, J. Lightwave Technol. 9, 577 (1990).
[CrossRef]

Y. Cai, T. Mizumoto, Y. Naito, J. Lightwave Technol. 8, 90 (1990).
[CrossRef]

A. K. Das, S. Bhattacharjee, J. Lightwave Technol. LT-3, 83 (1985).
[CrossRef]

Opt. Lett. (1)

Other (2)

L. A. Hornak, ed., Polymers for Lightwave and Integrated Optics (Dekker, New York, 1992), p. 405.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the fiber–film directional coupler using coupling fiber. SM, single mode.

Fig. 2
Fig. 2

Loss calibration curve for determination of the remaining cladding thickness of the coupling fiber.

Fig. 3
Fig. 3

Coupled power Pc/Pin versus thickness t of the film, excluding (dashed curve) and including (solid curve) losses.

Fig. 4
Fig. 4

Photograph of a portion of the input and coupling fibers around the splice during polishing.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

W = a ( β 0 2 n cl 2 k 2 ) 1 / 2 = 1 . 1428 V 0 . 996 , 1 . 5 < V < 2 . 5 ,
V = ka ( n co 2 n cl 2 ) 1 / 2 ,
V 2 = W 2 + U 2 ,
tan tq = 2 pq / ( q 2 p 2 ) ,
q 2 = k 2 n t 2 β t 2 ,
p 2 = β t 2 k 2 n cl 2 .
h ( z ) = h 0 + Z 2 / 2 R .
P c / P in = z = 1 n 4 C z 2 / [ 4 C z 2 + ( β 0 β t ) 2 ] ,

Metrics