Abstract

We report on extensive experimental measurement of the allowable range of soliton pulse energies for stable, error-free propagation with sliding-frequency guiding filters, as a function of both filter strength and sliding rate, and on interpretative numerical analysis. The most important result is our discovery of an upper bound and related optimum value for the filter strength; at the optimum, the allowed range of pulse energies is nearly two to one.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. F. Mollenauer, J. P. Gordon, S. G. Evangelides, Opt. Lett. 17, 1575 (1992).
    [Crossref] [PubMed]
  2. L. F. Mollenauer, E. Lichtman, M. J. Neubelt, G. T. Harvey, Electron. Lett. 29, 910 (1993).
    [Crossref]
  3. L. F. Mollenauer, P. V. Mamyshev, M. J. Neubelt, Opt. Lett. 19, 704 (1994).
    [Crossref] [PubMed]
  4. Y. Kodama, S. Wabnitz, Opt. Lett. 19,162 (1994).
    [Crossref] [PubMed]

1994 (2)

1993 (1)

L. F. Mollenauer, E. Lichtman, M. J. Neubelt, G. T. Harvey, Electron. Lett. 29, 910 (1993).
[Crossref]

1992 (1)

Evangelides, S. G.

Gordon, J. P.

Harvey, G. T.

L. F. Mollenauer, E. Lichtman, M. J. Neubelt, G. T. Harvey, Electron. Lett. 29, 910 (1993).
[Crossref]

Kodama, Y.

Lichtman, E.

L. F. Mollenauer, E. Lichtman, M. J. Neubelt, G. T. Harvey, Electron. Lett. 29, 910 (1993).
[Crossref]

Mamyshev, P. V.

Mollenauer, L. F.

Neubelt, M. J.

L. F. Mollenauer, P. V. Mamyshev, M. J. Neubelt, Opt. Lett. 19, 704 (1994).
[Crossref] [PubMed]

L. F. Mollenauer, E. Lichtman, M. J. Neubelt, G. T. Harvey, Electron. Lett. 29, 910 (1993).
[Crossref]

Wabnitz, S.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Fiber dispersion D (solid line), filter strength parameter η (dotted curve), and experimentally determined allowable soliton pulse energy limits Emax and Emin (filled squares and open circles, respectively) as functions of the signal wavelength λ. The sliding rate equals 13 GHz/Mm.

Fig. 2
Fig. 2

Experimentally determined allowable soliton pulse energy limits Emax and Emin (filled squares and open circles, respectively) and their ratio (filled circles) as functions of the frequency sliding rate f′. η = 0.4.

Fig. 3
Fig. 3

Soliton peak intensities as a function of distance, as determined by numerical simulation, for filter strength η = 0.4 and for various values of excess gain. The number next to each curve represents the excess gain parameter, αR per megameter.

Fig. 4
Fig. 4

Excess gain parameter αR, as determined from numerical simulations, as a function of the filter strength η. Filled circles; upper stability limit; filled squares; lower stability limit; open squares; line of quasi-stable behavior. Thus the behavior in region 1 is stable and that in regions 2, 3, and 4 is unstable.

Fig. 5
Fig. 5

Ratio of allowable soliton pulse energy limits Emax/Emin as a function of the filter strength η. Filled squares, from bit-error-rate measurements; open squares, from numerical simulations of isolated pulses.

Fig. 6
Fig. 6

Frequency sliding rate ω f as a function of the filter strength η. Squares, upper limit; dots, lower limit; dotted line, upper limit as determined analytically.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

u z = i ( 1 2 2 u t 2 + | u | 2 u ) + 1 2 [ α η ( i t ω f ) 2 ] u .
η = 8 π R ( 1 R ) 2 ( d λ ) 2 1 cDL f ,
ω f = 4 π 2 f ct c 3 / ( λ 2 D ) ,
α = α R t c 2 2 π c / ( λ 2 D ) .

Metrics