Abstract

Tissue glucose levels affect the refractive index of the extracellular fluid. The difference in refractive index between the extracellular fluid and the cellular components plays a role in determining the reduced scattering coefficient (μS′) of tissue. Hence a physical correlation may exist between the reduced scattering coefficient and glucose concentration. We have designed and constructed a frequency-domain near-infrared tissue spectrometer capable of measuring the reduced scattering coefficient of tissue with enough precision to detect changes in glucose levels in the physiological and pathological range.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. H. Ginsberg, Clin. Chem. 38, 1596 (1992).
    [PubMed]
  2. G. S. Wilson, Y. Zhang, G. Reach, D. Moatti-Sirat, V. Poitout, D. R. Thévenot, F. Lemonnier, J. Klein, Clin. Chem. 38, 1613 (1992).
    [PubMed]
  3. Y. Liu, P. Hering, M. O. Scully, Appl. Phys. B 54, 18 (1992).
    [CrossRef]
  4. M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, Clin. Chem. 38, 1618 (1992).
    [PubMed]
  5. S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and Oximetry,”Opt. Eng. (to be published).
  6. C. Lentner, ed., Geigy Scientific Tables (1984), Vol. 3, p. 69.
  7. CRC Handbook of Chemistry and Physics, 70th ed., R. C. Weast (CRC, Cleveland, Ohio, 1989).
  8. F. A. Duck, Physical Properties of Tissue (Academic, London, 1990), p. 63.
  9. J. B. Fishkin, E. Gratton, J. Opt. Soc. Am. A 10, 127 (1993).
    [CrossRef] [PubMed]
  10. S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, E. Gratton, Appl. Opt. 33, 5204 (1994).
    [CrossRef] [PubMed]
  11. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981), p. 89.
  12. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, Appl. Opt. 30, 4507 (1991).
    [CrossRef] [PubMed]
  13. J. L. Bennington, ed., Saunders Dictionary & Encyclopedia of Laboratory Medicine and Technology (Saunders, Philadelphia, Pa., 1984), p. 656.
  14. M. Kohl, M. Cope, M. Essenpreis, D. Böcker, Opt. Lett. 19, 2170 (1994).
    [CrossRef] [PubMed]

1994

1993

1992

B. H. Ginsberg, Clin. Chem. 38, 1596 (1992).
[PubMed]

G. S. Wilson, Y. Zhang, G. Reach, D. Moatti-Sirat, V. Poitout, D. R. Thévenot, F. Lemonnier, J. Klein, Clin. Chem. 38, 1613 (1992).
[PubMed]

Y. Liu, P. Hering, M. O. Scully, Appl. Phys. B 54, 18 (1992).
[CrossRef]

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, Clin. Chem. 38, 1618 (1992).
[PubMed]

1991

Barbieri, B.

S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, E. Gratton, Appl. Opt. 33, 5204 (1994).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and Oximetry,”Opt. Eng. (to be published).

Böcker, D.

Cope, M.

Duck, F. A.

F. A. Duck, Physical Properties of Tissue (Academic, London, 1990), p. 63.

Eaton, R. P.

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, Clin. Chem. 38, 1618 (1992).
[PubMed]

Essenpreis, M.

Fantini, S.

S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, E. Gratton, Appl. Opt. 33, 5204 (1994).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and Oximetry,”Opt. Eng. (to be published).

Fishkin, J. B.

Franceschini, M. A.

S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, E. Gratton, Appl. Opt. 33, 5204 (1994).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and Oximetry,”Opt. Eng. (to be published).

Ginsberg, B. H.

B. H. Ginsberg, Clin. Chem. 38, 1596 (1992).
[PubMed]

Gratton, E.

S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, E. Gratton, Appl. Opt. 33, 5204 (1994).
[CrossRef] [PubMed]

J. B. Fishkin, E. Gratton, J. Opt. Soc. Am. A 10, 127 (1993).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and Oximetry,”Opt. Eng. (to be published).

Haaland, D. M.

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, Clin. Chem. 38, 1618 (1992).
[PubMed]

Hering, P.

Y. Liu, P. Hering, M. O. Scully, Appl. Phys. B 54, 18 (1992).
[CrossRef]

Klein, J.

G. S. Wilson, Y. Zhang, G. Reach, D. Moatti-Sirat, V. Poitout, D. R. Thévenot, F. Lemonnier, J. Klein, Clin. Chem. 38, 1613 (1992).
[PubMed]

Koepp, G. W.

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, Clin. Chem. 38, 1618 (1992).
[PubMed]

Kohl, M.

Lemonnier, F.

G. S. Wilson, Y. Zhang, G. Reach, D. Moatti-Sirat, V. Poitout, D. R. Thévenot, F. Lemonnier, J. Klein, Clin. Chem. 38, 1613 (1992).
[PubMed]

Liu, Y.

Y. Liu, P. Hering, M. O. Scully, Appl. Phys. B 54, 18 (1992).
[CrossRef]

Maier, J. S.

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and Oximetry,”Opt. Eng. (to be published).

Moatti-Sirat, D.

G. S. Wilson, Y. Zhang, G. Reach, D. Moatti-Sirat, V. Poitout, D. R. Thévenot, F. Lemonnier, J. Klein, Clin. Chem. 38, 1613 (1992).
[PubMed]

Moes, C. J. M.

Poitout, V.

G. S. Wilson, Y. Zhang, G. Reach, D. Moatti-Sirat, V. Poitout, D. R. Thévenot, F. Lemonnier, J. Klein, Clin. Chem. 38, 1613 (1992).
[PubMed]

Prahl, S. A.

Reach, G.

G. S. Wilson, Y. Zhang, G. Reach, D. Moatti-Sirat, V. Poitout, D. R. Thévenot, F. Lemonnier, J. Klein, Clin. Chem. 38, 1613 (1992).
[PubMed]

Robinson, M. R.

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, Clin. Chem. 38, 1618 (1992).
[PubMed]

Robinson, P. L.

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, Clin. Chem. 38, 1618 (1992).
[PubMed]

Scully, M. O.

Y. Liu, P. Hering, M. O. Scully, Appl. Phys. B 54, 18 (1992).
[CrossRef]

Stallard, B. R.

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, Clin. Chem. 38, 1618 (1992).
[PubMed]

Thévenot, D. R.

G. S. Wilson, Y. Zhang, G. Reach, D. Moatti-Sirat, V. Poitout, D. R. Thévenot, F. Lemonnier, J. Klein, Clin. Chem. 38, 1613 (1992).
[PubMed]

Thomas, E. V.

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, Clin. Chem. 38, 1618 (1992).
[PubMed]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981), p. 89.

van Gemert, M. J. C.

van Marle, J.

van Staveren, H. J.

Walker, S. A.

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and Oximetry,”Opt. Eng. (to be published).

Wilson, G. S.

G. S. Wilson, Y. Zhang, G. Reach, D. Moatti-Sirat, V. Poitout, D. R. Thévenot, F. Lemonnier, J. Klein, Clin. Chem. 38, 1613 (1992).
[PubMed]

Zhang, Y.

G. S. Wilson, Y. Zhang, G. Reach, D. Moatti-Sirat, V. Poitout, D. R. Thévenot, F. Lemonnier, J. Klein, Clin. Chem. 38, 1613 (1992).
[PubMed]

Appl. Opt.

Appl. Phys. B

Y. Liu, P. Hering, M. O. Scully, Appl. Phys. B 54, 18 (1992).
[CrossRef]

Clin. Chem.

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, Clin. Chem. 38, 1618 (1992).
[PubMed]

B. H. Ginsberg, Clin. Chem. 38, 1596 (1992).
[PubMed]

G. S. Wilson, Y. Zhang, G. Reach, D. Moatti-Sirat, V. Poitout, D. R. Thévenot, F. Lemonnier, J. Klein, Clin. Chem. 38, 1613 (1992).
[PubMed]

J. Opt. Soc. Am. A

Opt. Lett.

Other

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and Oximetry,”Opt. Eng. (to be published).

C. Lentner, ed., Geigy Scientific Tables (1984), Vol. 3, p. 69.

CRC Handbook of Chemistry and Physics, 70th ed., R. C. Weast (CRC, Cleveland, Ohio, 1989).

F. A. Duck, Physical Properties of Tissue (Academic, London, 1990), p. 63.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981), p. 89.

J. L. Bennington, ed., Saunders Dictionary & Encyclopedia of Laboratory Medicine and Technology (Saunders, Philadelphia, Pa., 1984), p. 656.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Product of the refractive index n and the reduced scattering coefficient μs′ of the Liposyn–glucose suspension as a function of the glucose concentration (lower axis) and the index of refraction (upper axis) of the solution suspending the lipid droplets. This solution consists of water with a varying concentration of dissolved glucose to change the refractive index. The open squares indicate measured values, whereas the curve is a theoretical prediction based on the Rayleigh–Gans scattering model of Eq. (1) with n1 = 1.465 and K = 1.30 × 103 cm−1. The experimental errors in the data points are of the order of the dimensions of the open squares.

Fig. 2
Fig. 2

Glucose tolerance test performed on a human subject. At time t = 45 min the subject ingested a glucose load of 160 g of table sugar (1.75 g/kg body weight). The open circles indicate blood glucose concentration as determined by a home blood glucose monitor. A dashed curve joins the circles to aid the eye. The solid curve is the continuous measurement of nμs on the thigh of the subject made with our portable frequency-domain near-infrared spectrometer. The data acquired every 30 s were averaged in sets of five to produce the plot.

Fig. 3
Fig. 3

Correlation plot of the data shown in Fig. 2. The open squares indicate the correlation between the blood glucose as measured with the home blood glucose monitor with the measured product nμs averaged over a time of 2.5 min centered on the time the finger was lanced for the measurement. The errors in s shown here are the standard deviations of the five measurements averaged to generate a single scattering point. The errors in blood glucose concentration are estimated to be ±2.5 mg/dL. The curve is the theoretical result according to the Rayleigh–Gans model.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

μ s = K ( n 1 n 0 n 0 ) 2 ,
n μ s = K T [ n cell n ECF ( 0 ) δ n ] n ECF ( 0 ) ,

Metrics