Abstract

We include transient carrier velocity dynamics in a model describing the terahertz radiation from a large-aperture, biased photoconductor triggered by an ultrashort optical pulse. Waveforms of the radiated electric field are calculated as a function of optical excitation fluence and bias field. The model is applied to terahertz generation in biased GaAs photoconductors.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. T. Darrow, X.-C. Zhang, D. H. Auston, J. D. Morse, IEEE J. Quantum Electron. 28, 1607 (1992).
    [CrossRef]
  2. D. You, R. R. Jones, D. R. Dykaar, P. H. Bucksbaum, Opt. Lett. 18, 290 (1993).
    [CrossRef] [PubMed]
  3. P. K. Benicewicz, A. J. Taylor, Opt. Lett. 18,1332 (1993).
    [CrossRef] [PubMed]
  4. A. J. Taylor, P. K. Benicewicz, S. M. Young, Opt. Lett. 18, 1340 (1993).
    [CrossRef] [PubMed]
  5. B. I. Greene, P. N. Saeta, D. R. Dykaar, S. Schmitt-Rink, S. L. Chuang, IEEE J. Quantum Electron. 28, 2302 (1992).
    [CrossRef]
  6. A. E. Iverson, G. M. Wysin, D. L. Smith, A. Redondo, Appl. Phys. Lett. 52, 2148 (1988).
    [CrossRef]
  7. P. K. Benicewicz, J. P. Roberts, A. J. Taylor, “Scaling of terahertz radiation from large-aperture, biased photoconductors,”J. Opt. Soc. Am. B (to be published).
  8. The data in Fig. 1 of Ref. 6 can be fitted by a mobility, μ(t, t′)> given by Eq. (4), with μf = 7500 cm2/V s and τa = 2.5 ps for Eb = 1 kV/cm, μf = 6100 cm2/V s and τa = 2 ps for Eb = 3 kV/cm, μf = 3800 cm2/V s and τa = 1.5 ps for Eb = 5 kV/cm, and μf = 1150 cm2/V s and τa = 0.25 ps for Eb = 10 kV/cm.

1993 (3)

1992 (2)

B. I. Greene, P. N. Saeta, D. R. Dykaar, S. Schmitt-Rink, S. L. Chuang, IEEE J. Quantum Electron. 28, 2302 (1992).
[CrossRef]

J. T. Darrow, X.-C. Zhang, D. H. Auston, J. D. Morse, IEEE J. Quantum Electron. 28, 1607 (1992).
[CrossRef]

1988 (1)

A. E. Iverson, G. M. Wysin, D. L. Smith, A. Redondo, Appl. Phys. Lett. 52, 2148 (1988).
[CrossRef]

Auston, D. H.

J. T. Darrow, X.-C. Zhang, D. H. Auston, J. D. Morse, IEEE J. Quantum Electron. 28, 1607 (1992).
[CrossRef]

Benicewicz, P. K.

P. K. Benicewicz, A. J. Taylor, Opt. Lett. 18,1332 (1993).
[CrossRef] [PubMed]

A. J. Taylor, P. K. Benicewicz, S. M. Young, Opt. Lett. 18, 1340 (1993).
[CrossRef] [PubMed]

P. K. Benicewicz, J. P. Roberts, A. J. Taylor, “Scaling of terahertz radiation from large-aperture, biased photoconductors,”J. Opt. Soc. Am. B (to be published).

Bucksbaum, P. H.

Chuang, S. L.

B. I. Greene, P. N. Saeta, D. R. Dykaar, S. Schmitt-Rink, S. L. Chuang, IEEE J. Quantum Electron. 28, 2302 (1992).
[CrossRef]

Darrow, J. T.

J. T. Darrow, X.-C. Zhang, D. H. Auston, J. D. Morse, IEEE J. Quantum Electron. 28, 1607 (1992).
[CrossRef]

Dykaar, D. R.

D. You, R. R. Jones, D. R. Dykaar, P. H. Bucksbaum, Opt. Lett. 18, 290 (1993).
[CrossRef] [PubMed]

B. I. Greene, P. N. Saeta, D. R. Dykaar, S. Schmitt-Rink, S. L. Chuang, IEEE J. Quantum Electron. 28, 2302 (1992).
[CrossRef]

Greene, B. I.

B. I. Greene, P. N. Saeta, D. R. Dykaar, S. Schmitt-Rink, S. L. Chuang, IEEE J. Quantum Electron. 28, 2302 (1992).
[CrossRef]

Iverson, A. E.

A. E. Iverson, G. M. Wysin, D. L. Smith, A. Redondo, Appl. Phys. Lett. 52, 2148 (1988).
[CrossRef]

Jones, R. R.

Morse, J. D.

J. T. Darrow, X.-C. Zhang, D. H. Auston, J. D. Morse, IEEE J. Quantum Electron. 28, 1607 (1992).
[CrossRef]

Redondo, A.

A. E. Iverson, G. M. Wysin, D. L. Smith, A. Redondo, Appl. Phys. Lett. 52, 2148 (1988).
[CrossRef]

Roberts, J. P.

P. K. Benicewicz, J. P. Roberts, A. J. Taylor, “Scaling of terahertz radiation from large-aperture, biased photoconductors,”J. Opt. Soc. Am. B (to be published).

Saeta, P. N.

B. I. Greene, P. N. Saeta, D. R. Dykaar, S. Schmitt-Rink, S. L. Chuang, IEEE J. Quantum Electron. 28, 2302 (1992).
[CrossRef]

Schmitt-Rink, S.

B. I. Greene, P. N. Saeta, D. R. Dykaar, S. Schmitt-Rink, S. L. Chuang, IEEE J. Quantum Electron. 28, 2302 (1992).
[CrossRef]

Smith, D. L.

A. E. Iverson, G. M. Wysin, D. L. Smith, A. Redondo, Appl. Phys. Lett. 52, 2148 (1988).
[CrossRef]

Taylor, A. J.

P. K. Benicewicz, A. J. Taylor, Opt. Lett. 18,1332 (1993).
[CrossRef] [PubMed]

A. J. Taylor, P. K. Benicewicz, S. M. Young, Opt. Lett. 18, 1340 (1993).
[CrossRef] [PubMed]

P. K. Benicewicz, J. P. Roberts, A. J. Taylor, “Scaling of terahertz radiation from large-aperture, biased photoconductors,”J. Opt. Soc. Am. B (to be published).

Wysin, G. M.

A. E. Iverson, G. M. Wysin, D. L. Smith, A. Redondo, Appl. Phys. Lett. 52, 2148 (1988).
[CrossRef]

You, D.

Young, S. M.

Zhang, X.-C.

J. T. Darrow, X.-C. Zhang, D. H. Auston, J. D. Morse, IEEE J. Quantum Electron. 28, 1607 (1992).
[CrossRef]

Appl. Phys. Lett. (1)

A. E. Iverson, G. M. Wysin, D. L. Smith, A. Redondo, Appl. Phys. Lett. 52, 2148 (1988).
[CrossRef]

IEEE J. Quantum Electron. (2)

B. I. Greene, P. N. Saeta, D. R. Dykaar, S. Schmitt-Rink, S. L. Chuang, IEEE J. Quantum Electron. 28, 2302 (1992).
[CrossRef]

J. T. Darrow, X.-C. Zhang, D. H. Auston, J. D. Morse, IEEE J. Quantum Electron. 28, 1607 (1992).
[CrossRef]

Opt. Lett. (3)

Other (2)

P. K. Benicewicz, J. P. Roberts, A. J. Taylor, “Scaling of terahertz radiation from large-aperture, biased photoconductors,”J. Opt. Soc. Am. B (to be published).

The data in Fig. 1 of Ref. 6 can be fitted by a mobility, μ(t, t′)> given by Eq. (4), with μf = 7500 cm2/V s and τa = 2.5 ps for Eb = 1 kV/cm, μf = 6100 cm2/V s and τa = 2 ps for Eb = 3 kV/cm, μf = 3800 cm2/V s and τa = 1.5 ps for Eb = 5 kV/cm, and μf = 1150 cm2/V s and τa = 0.25 ps for Eb = 10 kV/cm.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Waveforms of the radiated electric field Er(T)/CEb versus T for a = 0.1, 0.3, 1, 3, 10, 30 and for (a) S = 0.1 and (b) S = 10.

Fig. 2
Fig. 2

(a) Er,peak versus S, (b) FWHM of Er(T) versus S.

Fig. 3
Fig. 3

Radiated waveforms Er(t) versus t for optical fluences of F = 0.003, 0.01, 0.03, 0.10, 0.15 mJ/m2 for 2-eV excitation where (a) Eb = 1 kV/cm and (b) Eb = 10 kV/cm and for 1.5-eV excitation where (c) Eb = 1 kV/cm and (d) Eb = 10 kV/cm.

Fig. 4
Fig. 4

Er,peak versus F with Eb = 1, 3, 5, 10 kV/cm for (a) 2-eV and (b) 1.5-eV excitation.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E r ( t ) = A E b 4 π 0 c 2 z d σ s d t ( 1 + σ s η 0 1 + n ) 2 ,
σ s ( t ) = e ( 1 R ) h ν t I opt ( t ) μ ( t , t ) dt ,
I opt ( t ) = F π τ exp ( t 2 / τ 2 ) ,
μ ( t , t ) = μ f ( t t ) / τ a 1 + ( t t ) / τ a ,
E r ( T ) = C E b aS T e x 2 d x [ 1 + a ( T x ) ] 2 [ 1 + aS T e x 2 ( T x ) d x 1 + a ( T x ) ] 2 ,
C = A n 2 π 0 c 2 η 0 τ z , F s = ( 1 + n ) h ν π e ( 1 R ) μ f η 0 ,

Metrics