Abstract

We report the generation of 0.589-μm radiation from mixing the pump at 1.064 μm and the signal at 1.319 μm of a singly resonant, synchronously pumped AgGaS2 optical parametric oscillator. A KTP crystal is used for the sum-frequency generation (SFG). Both extracavity and intracavity SFG is demonstrated, with overall conversion efficiencies of 3.5% and 10.5%, respectively. Near-transform-limited pulses of less than 50 ps are generated from 100-ps pulses. With a limited available peak pump power, both spatial orderings of the KTP and the AgGaS2 crystals for intracavity SFG produce similar conversion efficiency and outputs of similar pulse duration, spectral width, and stability.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. P. Bey, C. L. Tang, IEEE J. Quantum Electron. QE-8, 361 (1972).
    [CrossRef]
  2. A. J. Campillo, IEEE J. Quantum Electron. QE-8, 914 (1972).
    [CrossRef]
  3. See the feature onoptical parametric oscillation and amplification, J. Opt. Soc. Am. B 10, 1656–1785 (1993).optical parametric oscillation and amplification, J. Opt. Soc. Am. B 10, 2148–2239 (1993).
  4. G. T. Moore, K. Koch, IEEE J. Quantum Electron. 29, 961 (1993).
    [CrossRef]
  5. G. T. Moore, K. Koch, IEEE J. Quantum Electron. 29, 2334 (1993).
    [CrossRef]
  6. Q. Fu, G. Mak, H. M. van Driel, Opt. Lett. 17, 1006 (1992).
    [CrossRef] [PubMed]
  7. W. S. Pelouch, P. E. Powers, C. L. Tang, Opt. Lett. 17, 1070 (1992).
    [CrossRef] [PubMed]
  8. P. E. Powers, R. J. Ellingson, W. S. Pelouch, C. L. Tang, J. Opt. Soc. Am. B 10, 2162 (1993).
    [CrossRef]
  9. E. C. Cheung, K. Koch, G. T. Moore, Opt. Lett. 19, 631 (1994).
    [CrossRef] [PubMed]
  10. R. J. Ellingson, C. L. Tang, Opt. Lett. 18, 438 (1993).
    [CrossRef] [PubMed]
  11. R. A. Humphries, C. A. Primmerman, L. C. Bradley, J. Hermann, Opt. Lett. 16, 1367 (1991).
    [CrossRef]

1994 (1)

1993 (5)

1992 (2)

1991 (1)

1972 (2)

P. P. Bey, C. L. Tang, IEEE J. Quantum Electron. QE-8, 361 (1972).
[CrossRef]

A. J. Campillo, IEEE J. Quantum Electron. QE-8, 914 (1972).
[CrossRef]

Bey, P. P.

P. P. Bey, C. L. Tang, IEEE J. Quantum Electron. QE-8, 361 (1972).
[CrossRef]

Bradley, L. C.

Campillo, A. J.

A. J. Campillo, IEEE J. Quantum Electron. QE-8, 914 (1972).
[CrossRef]

Cheung, E. C.

Ellingson, R. J.

Fu, Q.

Hermann, J.

Humphries, R. A.

Koch, K.

E. C. Cheung, K. Koch, G. T. Moore, Opt. Lett. 19, 631 (1994).
[CrossRef] [PubMed]

G. T. Moore, K. Koch, IEEE J. Quantum Electron. 29, 961 (1993).
[CrossRef]

G. T. Moore, K. Koch, IEEE J. Quantum Electron. 29, 2334 (1993).
[CrossRef]

Mak, G.

Moore, G. T.

E. C. Cheung, K. Koch, G. T. Moore, Opt. Lett. 19, 631 (1994).
[CrossRef] [PubMed]

G. T. Moore, K. Koch, IEEE J. Quantum Electron. 29, 2334 (1993).
[CrossRef]

G. T. Moore, K. Koch, IEEE J. Quantum Electron. 29, 961 (1993).
[CrossRef]

Pelouch, W. S.

Powers, P. E.

Primmerman, C. A.

Tang, C. L.

van Driel, H. M.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagrams of the experimental setups: (a) extracavity SFG, (b) the intracavity SFG→OPO configuration, (c) the intracavity OPO→SFG configuration.

Fig. 2
Fig. 2

Cavity-length detuning characteristics of (a) extracavity SFG, (b) the intracavity SFG→OPO configuration, and the (c) intracavity OPO→SFG configuration.

Fig. 3
Fig. 3

(a) Temporal and (b) spectral profiles of 0.589-μm radiation from the SFG→OPO configuration.

Metrics