Abstract

We report on interferometric measurements of nonlinear phase shifts of the fundamental mode that are due to cascading in a second-harmonic-generation experiment in lithium niobate channel waveguides. With temperature tuning of the wave-vector mismatch the nonlinear phase shifts were adjustable in sign and magnitude. Varying the wave-vector matching condition along the waveguide leads to large phase shifts with low depletion and dispersion of the fundamental.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Echardt, J. Reintjes, IEEE J. Quantum Electron. QE-20, 1178 (1984).
    [CrossRef]
  2. R. Schiek, J. Opt. Soc. Am. B 10, 1848 (1993).
    [CrossRef]
  3. R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. I. Stegeman, E. W. Van Stryland, H. Vanherzeele, Opt. Lett. 17, 28 (1992).
    [CrossRef] [PubMed]
  4. G. I. Stegeman, M. Sheik-Bahae, E. W. Van Stryland, G. Assanto, Opt. Lett. 18, 13 (1993).
    [CrossRef] [PubMed]
  5. M. L. Sundheimer, C. Bosshard, E. W. Van Stryland, G. I. Stegeman, J. D. Bierlein, Opt. Lett. 18, 1397 (1993).
    [CrossRef] [PubMed]
  6. G. Assanto, G. I. Stegeman, M. Sheik-Bahae, E. W. Van Stryland, Appl. Phys. Lett. 62, 1323 (1993).
    [CrossRef]
  7. D. C. Hutchings, J. S. Aitchison, C. N. Ironside, Opt. Lett. 18, 793 (1993).
    [CrossRef] [PubMed]
  8. R. Schiek, Opt. Quantum Electron. 26, 415 (1994).
    [CrossRef]
  9. K. Hayata, M. Koshiba, Phys. Rev. Lett. 71, 3275 (1993).
    [CrossRef] [PubMed]
  10. H. Seibert, “Neue Methoden der Phasenanpassung optisch nichtlinearer Wechselwirkungen in Ti:LiNbO3-und HxLi1−xNbO3-Streifenwellenieiterr,” Ph.D. dissertation (Universität Paderborn, Paderborn, Germany, 1992).
  11. E. Strake, G. P. Bava, I. Montrosset, J. Lightwave Technol. 6, 1126 (1988).
    [CrossRef]
  12. R. Schiek, Nonlinear Opt. 6, 19 (1993).
  13. K. B. Rochford, R. Zanoni, G. I. Stegeman, W. Krug, E. Miao, M. W. Beranek, IEEE J. Quantum Electron. 28, 2044 (1992).
    [CrossRef]

1994 (1)

R. Schiek, Opt. Quantum Electron. 26, 415 (1994).
[CrossRef]

1993 (7)

1992 (2)

R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. I. Stegeman, E. W. Van Stryland, H. Vanherzeele, Opt. Lett. 17, 28 (1992).
[CrossRef] [PubMed]

K. B. Rochford, R. Zanoni, G. I. Stegeman, W. Krug, E. Miao, M. W. Beranek, IEEE J. Quantum Electron. 28, 2044 (1992).
[CrossRef]

1988 (1)

E. Strake, G. P. Bava, I. Montrosset, J. Lightwave Technol. 6, 1126 (1988).
[CrossRef]

1984 (1)

R. C. Echardt, J. Reintjes, IEEE J. Quantum Electron. QE-20, 1178 (1984).
[CrossRef]

Aitchison, J. S.

Assanto, G.

G. I. Stegeman, M. Sheik-Bahae, E. W. Van Stryland, G. Assanto, Opt. Lett. 18, 13 (1993).
[CrossRef] [PubMed]

G. Assanto, G. I. Stegeman, M. Sheik-Bahae, E. W. Van Stryland, Appl. Phys. Lett. 62, 1323 (1993).
[CrossRef]

Bava, G. P.

E. Strake, G. P. Bava, I. Montrosset, J. Lightwave Technol. 6, 1126 (1988).
[CrossRef]

Beranek, M. W.

K. B. Rochford, R. Zanoni, G. I. Stegeman, W. Krug, E. Miao, M. W. Beranek, IEEE J. Quantum Electron. 28, 2044 (1992).
[CrossRef]

Bierlein, J. D.

Bosshard, C.

DeSalvo, R.

Echardt, R. C.

R. C. Echardt, J. Reintjes, IEEE J. Quantum Electron. QE-20, 1178 (1984).
[CrossRef]

Hagan, D. J.

Hayata, K.

K. Hayata, M. Koshiba, Phys. Rev. Lett. 71, 3275 (1993).
[CrossRef] [PubMed]

Hutchings, D. C.

Ironside, C. N.

Koshiba, M.

K. Hayata, M. Koshiba, Phys. Rev. Lett. 71, 3275 (1993).
[CrossRef] [PubMed]

Krug, W.

K. B. Rochford, R. Zanoni, G. I. Stegeman, W. Krug, E. Miao, M. W. Beranek, IEEE J. Quantum Electron. 28, 2044 (1992).
[CrossRef]

Miao, E.

K. B. Rochford, R. Zanoni, G. I. Stegeman, W. Krug, E. Miao, M. W. Beranek, IEEE J. Quantum Electron. 28, 2044 (1992).
[CrossRef]

Montrosset, I.

E. Strake, G. P. Bava, I. Montrosset, J. Lightwave Technol. 6, 1126 (1988).
[CrossRef]

Reintjes, J.

R. C. Echardt, J. Reintjes, IEEE J. Quantum Electron. QE-20, 1178 (1984).
[CrossRef]

Rochford, K. B.

K. B. Rochford, R. Zanoni, G. I. Stegeman, W. Krug, E. Miao, M. W. Beranek, IEEE J. Quantum Electron. 28, 2044 (1992).
[CrossRef]

Schiek, R.

R. Schiek, Opt. Quantum Electron. 26, 415 (1994).
[CrossRef]

R. Schiek, Nonlinear Opt. 6, 19 (1993).

R. Schiek, J. Opt. Soc. Am. B 10, 1848 (1993).
[CrossRef]

Seibert, H.

H. Seibert, “Neue Methoden der Phasenanpassung optisch nichtlinearer Wechselwirkungen in Ti:LiNbO3-und HxLi1−xNbO3-Streifenwellenieiterr,” Ph.D. dissertation (Universität Paderborn, Paderborn, Germany, 1992).

Sheik-Bahae, M.

Stegeman, G. I.

Strake, E.

E. Strake, G. P. Bava, I. Montrosset, J. Lightwave Technol. 6, 1126 (1988).
[CrossRef]

Sundheimer, M. L.

Van Stryland, E. W.

Vanherzeele, H.

Zanoni, R.

K. B. Rochford, R. Zanoni, G. I. Stegeman, W. Krug, E. Miao, M. W. Beranek, IEEE J. Quantum Electron. 28, 2044 (1992).
[CrossRef]

Appl. Phys. Lett. (1)

G. Assanto, G. I. Stegeman, M. Sheik-Bahae, E. W. Van Stryland, Appl. Phys. Lett. 62, 1323 (1993).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. C. Echardt, J. Reintjes, IEEE J. Quantum Electron. QE-20, 1178 (1984).
[CrossRef]

K. B. Rochford, R. Zanoni, G. I. Stegeman, W. Krug, E. Miao, M. W. Beranek, IEEE J. Quantum Electron. 28, 2044 (1992).
[CrossRef]

J. Lightwave Technol. (1)

E. Strake, G. P. Bava, I. Montrosset, J. Lightwave Technol. 6, 1126 (1988).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nonlinear Opt. (1)

R. Schiek, Nonlinear Opt. 6, 19 (1993).

Opt. Lett. (4)

Opt. Quantum Electron. (1)

R. Schiek, Opt. Quantum Electron. 26, 415 (1994).
[CrossRef]

Phys. Rev. Lett. (1)

K. Hayata, M. Koshiba, Phys. Rev. Lett. 71, 3275 (1993).
[CrossRef] [PubMed]

Other (1)

H. Seibert, “Neue Methoden der Phasenanpassung optisch nichtlinearer Wechselwirkungen in Ti:LiNbO3-und HxLi1−xNbO3-Streifenwellenieiterr,” Ph.D. dissertation (Universität Paderborn, Paderborn, Germany, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Effective temperature profile along the crystal oven.

Fig. 2
Fig. 2

Measured normalized second-harmonic (SH) power versus temperature for pulses with peak input powers of 2 W (dashed curve) and 60 W (solid curve).

Fig. 3
Fig. 3

Calculated normalized second-harmonic (SH) power versus temperature for pulses with peak input powers of 2 W (dashed curve) and 60 W (solid curve).

Fig. 4
Fig. 4

Temperature dependence of the throughput fundamental power for 60-W peak input power. The smooth curve corresponds to theory.

Fig. 5
Fig. 5

Temperature dependence of the nonlinear (NL) phase shift for a peak input power of 60 W. The smooth curve corresponds to theory.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d A F d z + j β F A F = j ω F 4 p 0 2 χ ( 2 ) K A SH A F * , d A SH d z + j β SH A SH = j ω SH 4 p 0 χ ( 2 ) K A F A F ,

Metrics