Abstract

We present studies of the photorefractive effect in nonphotorefractive orientations of liquid-encapsulated Czochralski-grown GaAs crystals. Picosecond diffraction experiments conducted in different samples show that a forbidden photorefractive signal correlates well with dislocation density, which points out that the effect arises from strain fields and growth defects.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. K. Jain, M. B. Klein, in Optical Phase Conjugation, R. A. Fisher (Academic, New York, 1983), p. 307.
  2. J. C. Fabre, J. M. C. Jonathan, G. Roosen, Opt. Commun. 65, 257 (1988).
    [CrossRef]
  3. W. A. Schroeder, T. S. Stark, M. D. Dawson, T. F. Bogess, A. L. Smirl, G. C. Valley, Opt. Lett. 16, 159 (1991).
    [PubMed]
  4. K. Jarasiunas, P. Delaye, J. C. Launay, G. Roosen, Opt. Commun. 93, 59 (1992).
    [CrossRef]
  5. K. Jarasiunas, P. Delaye, G. Roosen, Phys. Status Solidi B 175, 445 (1993).
    [CrossRef]
  6. R. Hofmeister, A. Yariv, S. Yagi, A. Agranat, Phys. Rev. Lett. 69, 1459 (1992); erratum R. Hofmeister, A. Yariv, S. Yagi, A. Agranat, Phys. Rev. Lett. 72, 435 (1994).
    [CrossRef] [PubMed]
  7. R. N. Thomas, S. McGuigan, G. W. Eldridge, D. L. Barret, Proc. IEEE 76, 778 (1988).
    [CrossRef]
  8. A. E. Smirl, G. C. Valley, K. M. Bohnert, T. F. Boggess, IEEE J. Quantum Electron. 24, 289 (1988).
    [CrossRef]
  9. Absorption of linearly polarized light in media with oriented dislocations depends on the orientation of the electric vector of the light beam; seeL. I. Stephanovitch, E. P. Feldman, Sov. Phys. Solid State 27, 725 (1985); D. Vignaud, J. L. Farvacque, J. Appl. Phys. 65, 1261 (1989).
    [CrossRef]

1993 (1)

K. Jarasiunas, P. Delaye, G. Roosen, Phys. Status Solidi B 175, 445 (1993).
[CrossRef]

1992 (2)

R. Hofmeister, A. Yariv, S. Yagi, A. Agranat, Phys. Rev. Lett. 69, 1459 (1992); erratum R. Hofmeister, A. Yariv, S. Yagi, A. Agranat, Phys. Rev. Lett. 72, 435 (1994).
[CrossRef] [PubMed]

K. Jarasiunas, P. Delaye, J. C. Launay, G. Roosen, Opt. Commun. 93, 59 (1992).
[CrossRef]

1991 (1)

1988 (3)

J. C. Fabre, J. M. C. Jonathan, G. Roosen, Opt. Commun. 65, 257 (1988).
[CrossRef]

R. N. Thomas, S. McGuigan, G. W. Eldridge, D. L. Barret, Proc. IEEE 76, 778 (1988).
[CrossRef]

A. E. Smirl, G. C. Valley, K. M. Bohnert, T. F. Boggess, IEEE J. Quantum Electron. 24, 289 (1988).
[CrossRef]

1985 (1)

Absorption of linearly polarized light in media with oriented dislocations depends on the orientation of the electric vector of the light beam; seeL. I. Stephanovitch, E. P. Feldman, Sov. Phys. Solid State 27, 725 (1985); D. Vignaud, J. L. Farvacque, J. Appl. Phys. 65, 1261 (1989).
[CrossRef]

Agranat, A.

R. Hofmeister, A. Yariv, S. Yagi, A. Agranat, Phys. Rev. Lett. 69, 1459 (1992); erratum R. Hofmeister, A. Yariv, S. Yagi, A. Agranat, Phys. Rev. Lett. 72, 435 (1994).
[CrossRef] [PubMed]

Barret, D. L.

R. N. Thomas, S. McGuigan, G. W. Eldridge, D. L. Barret, Proc. IEEE 76, 778 (1988).
[CrossRef]

Bogess, T. F.

Boggess, T. F.

A. E. Smirl, G. C. Valley, K. M. Bohnert, T. F. Boggess, IEEE J. Quantum Electron. 24, 289 (1988).
[CrossRef]

Bohnert, K. M.

A. E. Smirl, G. C. Valley, K. M. Bohnert, T. F. Boggess, IEEE J. Quantum Electron. 24, 289 (1988).
[CrossRef]

Dawson, M. D.

Delaye, P.

K. Jarasiunas, P. Delaye, G. Roosen, Phys. Status Solidi B 175, 445 (1993).
[CrossRef]

K. Jarasiunas, P. Delaye, J. C. Launay, G. Roosen, Opt. Commun. 93, 59 (1992).
[CrossRef]

Eldridge, G. W.

R. N. Thomas, S. McGuigan, G. W. Eldridge, D. L. Barret, Proc. IEEE 76, 778 (1988).
[CrossRef]

Fabre, J. C.

J. C. Fabre, J. M. C. Jonathan, G. Roosen, Opt. Commun. 65, 257 (1988).
[CrossRef]

Feldman, E. P.

Absorption of linearly polarized light in media with oriented dislocations depends on the orientation of the electric vector of the light beam; seeL. I. Stephanovitch, E. P. Feldman, Sov. Phys. Solid State 27, 725 (1985); D. Vignaud, J. L. Farvacque, J. Appl. Phys. 65, 1261 (1989).
[CrossRef]

Hofmeister, R.

R. Hofmeister, A. Yariv, S. Yagi, A. Agranat, Phys. Rev. Lett. 69, 1459 (1992); erratum R. Hofmeister, A. Yariv, S. Yagi, A. Agranat, Phys. Rev. Lett. 72, 435 (1994).
[CrossRef] [PubMed]

Jain, R. K.

R. K. Jain, M. B. Klein, in Optical Phase Conjugation, R. A. Fisher (Academic, New York, 1983), p. 307.

Jarasiunas, K.

K. Jarasiunas, P. Delaye, G. Roosen, Phys. Status Solidi B 175, 445 (1993).
[CrossRef]

K. Jarasiunas, P. Delaye, J. C. Launay, G. Roosen, Opt. Commun. 93, 59 (1992).
[CrossRef]

Jonathan, J. M. C.

J. C. Fabre, J. M. C. Jonathan, G. Roosen, Opt. Commun. 65, 257 (1988).
[CrossRef]

Klein, M. B.

R. K. Jain, M. B. Klein, in Optical Phase Conjugation, R. A. Fisher (Academic, New York, 1983), p. 307.

Launay, J. C.

K. Jarasiunas, P. Delaye, J. C. Launay, G. Roosen, Opt. Commun. 93, 59 (1992).
[CrossRef]

McGuigan, S.

R. N. Thomas, S. McGuigan, G. W. Eldridge, D. L. Barret, Proc. IEEE 76, 778 (1988).
[CrossRef]

Roosen, G.

K. Jarasiunas, P. Delaye, G. Roosen, Phys. Status Solidi B 175, 445 (1993).
[CrossRef]

K. Jarasiunas, P. Delaye, J. C. Launay, G. Roosen, Opt. Commun. 93, 59 (1992).
[CrossRef]

J. C. Fabre, J. M. C. Jonathan, G. Roosen, Opt. Commun. 65, 257 (1988).
[CrossRef]

Schroeder, W. A.

Smirl, A. E.

A. E. Smirl, G. C. Valley, K. M. Bohnert, T. F. Boggess, IEEE J. Quantum Electron. 24, 289 (1988).
[CrossRef]

Smirl, A. L.

Stark, T. S.

Stephanovitch, L. I.

Absorption of linearly polarized light in media with oriented dislocations depends on the orientation of the electric vector of the light beam; seeL. I. Stephanovitch, E. P. Feldman, Sov. Phys. Solid State 27, 725 (1985); D. Vignaud, J. L. Farvacque, J. Appl. Phys. 65, 1261 (1989).
[CrossRef]

Thomas, R. N.

R. N. Thomas, S. McGuigan, G. W. Eldridge, D. L. Barret, Proc. IEEE 76, 778 (1988).
[CrossRef]

Valley, G. C.

W. A. Schroeder, T. S. Stark, M. D. Dawson, T. F. Bogess, A. L. Smirl, G. C. Valley, Opt. Lett. 16, 159 (1991).
[PubMed]

A. E. Smirl, G. C. Valley, K. M. Bohnert, T. F. Boggess, IEEE J. Quantum Electron. 24, 289 (1988).
[CrossRef]

Yagi, S.

R. Hofmeister, A. Yariv, S. Yagi, A. Agranat, Phys. Rev. Lett. 69, 1459 (1992); erratum R. Hofmeister, A. Yariv, S. Yagi, A. Agranat, Phys. Rev. Lett. 72, 435 (1994).
[CrossRef] [PubMed]

Yariv, A.

R. Hofmeister, A. Yariv, S. Yagi, A. Agranat, Phys. Rev. Lett. 69, 1459 (1992); erratum R. Hofmeister, A. Yariv, S. Yagi, A. Agranat, Phys. Rev. Lett. 72, 435 (1994).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

A. E. Smirl, G. C. Valley, K. M. Bohnert, T. F. Boggess, IEEE J. Quantum Electron. 24, 289 (1988).
[CrossRef]

Opt. Commun. (2)

J. C. Fabre, J. M. C. Jonathan, G. Roosen, Opt. Commun. 65, 257 (1988).
[CrossRef]

K. Jarasiunas, P. Delaye, J. C. Launay, G. Roosen, Opt. Commun. 93, 59 (1992).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

R. Hofmeister, A. Yariv, S. Yagi, A. Agranat, Phys. Rev. Lett. 69, 1459 (1992); erratum R. Hofmeister, A. Yariv, S. Yagi, A. Agranat, Phys. Rev. Lett. 72, 435 (1994).
[CrossRef] [PubMed]

Phys. Status Solidi B (1)

K. Jarasiunas, P. Delaye, G. Roosen, Phys. Status Solidi B 175, 445 (1993).
[CrossRef]

Proc. IEEE (1)

R. N. Thomas, S. McGuigan, G. W. Eldridge, D. L. Barret, Proc. IEEE 76, 778 (1988).
[CrossRef]

Sov. Phys. Solid State (1)

Absorption of linearly polarized light in media with oriented dislocations depends on the orientation of the electric vector of the light beam; seeL. I. Stephanovitch, E. P. Feldman, Sov. Phys. Solid State 27, 725 (1985); D. Vignaud, J. L. Farvacque, J. Appl. Phys. 65, 1261 (1989).
[CrossRef]

Other (1)

R. K. Jain, M. B. Klein, in Optical Phase Conjugation, R. A. Fisher (Academic, New York, 1983), p. 307.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

PR grating dynamics at different crystal orientations and excitation levels of undoped GaAs sample #1: curve 1, Kg // [001] at I0 = 3.5 mJ cm−2; curve 2, Kg // [110] at I0 = 4 mJ cm−2. The dashed lines represent the decay time constant with a value of τPR = 65 ps. Zero delay time corresponds to coinciding probe and pump beams.

Fig. 2
Fig. 2

Exposure characteristics of light diffraction on photorefractive gratings with period Λ = 1.8 μm. in differently cut and oriented GaAs crystals: light propagates along the [ 1 ¯ 10 ] axis and Kg // [001] (curve 1) or Kg // [110] (curve 2); light propagates along the [001] axis in semi-insulating undoped (curve 3) and heavily doped (curve 4) GaAs crystals. The probe-beam delay time is 26 ps. The dashed lines indicate the slopes of the exposure characteristics (γ1,γ2).

Fig. 3
Fig. 3

Dependence of the ratio S = I1PR/I1FC versus dislocation density ND in liquid-encapsulated Czochralski-grown GaAs crystals with experimental points shown as filled circles. The straight line is a linear regression of the square root of S (open circles).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ n PR = n 0 3 r eff E sc 2 ,
τ a = e K g 2 k B T n / μ p + p / μ n n + p = 43 ps
S = I 1 PR I 1 FC = ( π Δ n PR d / λ ) 2 ( π Δ n FC d / λ ) 2 = ( Δ n PR Δ n FC ) 2 .

Metrics