Abstract

A new low-latency, cascadable optical logic gate with gain, high contrast, and three-terminal input–output isolation is introduced. The interaction between two orthogonally polarized spatial solitons brought into coincidence at the boundary of a saturating nonlinear medium and propagating in different directions results in the phase-insensitive spatial dragging of a strong pump soliton by a weaker signal. As a result, the strong pump is transmitted through an aperture when the weak signal is not present, and it is dragged to the side by more than a beam width and blocked in the presence of the weak signal, thus implementing an inverter with gain. A multi-input, logically complete NOR gate also can be implemented in a cascaded system.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. T. Shi, S. Chi, Opt. Lett. 15, 1123 (1990).
    [CrossRef] [PubMed]
  2. S. R. Skinner, G. R. Allan, D. R. Anderson, A. L. Smirl, IEEE J. Quantum Electron. 27, 2211 (1991).
    [CrossRef]
  3. J. S. Aitchison, A. M. Weiner, Y. Silberberg, D. E. Leaird, M. K. Oliver, J. L. Jackel, P. W. E. Smith, Opt. Lett. 16, 15 (1991).
    [CrossRef] [PubMed]
  4. J. Bian, A. K. Chan, Microwave Opt. Technol. Lett. 4, 575 (1991).
    [CrossRef]
  5. S. R. Friberg, Opt. Lett. 16, 1484 (1991).
    [CrossRef] [PubMed]
  6. M. Shalaby, A. Barthelemy, Opt. Lett. 16, 1472 (1991).
    [CrossRef] [PubMed]
  7. C. R. Menyuk, Opt. Lett. 12, 614 (1987); J. Opt. Soc. Am. B 5, 392 (1988).
    [CrossRef] [PubMed]
  8. M. N. Islam, Opt. Lett. 14, 1257 (1989).
    [CrossRef] [PubMed]
  9. M. N. Islam, Opt. Lett. 15, 417 (1990).
    [CrossRef] [PubMed]
  10. K. Wagner, R. McLeod, in Optical Computing, Vol. 7 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), paper OFB2.
  11. Y. Chen, Opt. Lett. 16, 4 (1991).
    [CrossRef] [PubMed]

1991 (6)

1990 (2)

1989 (1)

1987 (1)

Aitchison, J. S.

Allan, G. R.

S. R. Skinner, G. R. Allan, D. R. Anderson, A. L. Smirl, IEEE J. Quantum Electron. 27, 2211 (1991).
[CrossRef]

Anderson, D. R.

S. R. Skinner, G. R. Allan, D. R. Anderson, A. L. Smirl, IEEE J. Quantum Electron. 27, 2211 (1991).
[CrossRef]

Barthelemy, A.

Bian, J.

J. Bian, A. K. Chan, Microwave Opt. Technol. Lett. 4, 575 (1991).
[CrossRef]

Chan, A. K.

J. Bian, A. K. Chan, Microwave Opt. Technol. Lett. 4, 575 (1991).
[CrossRef]

Chen, Y.

Chi, S.

Friberg, S. R.

Islam, M. N.

Jackel, J. L.

Leaird, D. E.

McLeod, R.

K. Wagner, R. McLeod, in Optical Computing, Vol. 7 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), paper OFB2.

Menyuk, C. R.

Oliver, M. K.

Shalaby, M.

Shi, T. T.

Silberberg, Y.

Skinner, S. R.

S. R. Skinner, G. R. Allan, D. R. Anderson, A. L. Smirl, IEEE J. Quantum Electron. 27, 2211 (1991).
[CrossRef]

Smirl, A. L.

S. R. Skinner, G. R. Allan, D. R. Anderson, A. L. Smirl, IEEE J. Quantum Electron. 27, 2211 (1991).
[CrossRef]

Smith, P. W. E.

Wagner, K.

K. Wagner, R. McLeod, in Optical Computing, Vol. 7 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), paper OFB2.

Weiner, A. M.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Asymmetric soliton dragging showing propagation of a pump alone on the top left passing through a spatial aperture, the dragging of a pump by a signal on the right, and a signal alone propagating at an angle on the bottom left.

Fig. 2
Fig. 2

Contrast metric for asymmetric soliton dragging for a propagation distance 5Z0 and aperture width 3.5w0, plotted versus the ratio of pump-to-signal beam powers and the normalized interaction angle κ between the signal and pump beams. The solid contour represents unity contrast, below which the surface is clipped.

Fig. 3
Fig. 3

Contrast metric for asymmetric soliton dragging with beam ratio of 5 and aperture width 3.5w0 versus propagation distance in confocal distances Z0 and normalized interaction angle κ. The insets show representative interactions.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

2 i k u 1 z + 2 u 1 x 2 + 2 k 2 n 2 n 0 ( | u 1 | 2 + Δ | u 2 | 2 ) u 1 = 0 , 2 i k u 2 z + 2 u 2 x 2 + 2 k 2 n 2 n 0 ( | u 2 | 2 + Δ | u 1 | 2 ) u 2 = 0 ,

Metrics