Abstract

Laser action of Rhodamine 640 perchlorate in highly scattering media consisting of TiO2 nanoparticles in methanol pumped by a 3-ns 532-nm laser pulse is observed by use of spectral and temporal measurements. The threshold for stimulated emission is dependent on the concentration of both laser dye and scattering particles. For a 2.5 × 10−2 M dye concentration, the lasing threshold was found to be reduced by more than 2 orders of magnitude when the density of scattering particles was increased from 5 × 109 to 2.5 × 1012 cm−3. However, for a concentration of 5 × 10−4 M of Rhodamine 640 the lasing threshold was higher in scattering media than for the methanol host. The pulse duration of stimulated emission for Rhodamine 640 perchlorate in these random systems is ~50 ps.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Yoo, F. Liu, R. R. Alfano, Phys. Rev. Lett. 64, 2647 (1990).
    [CrossRef] [PubMed]
  2. V. M. Markushev, V. F. Zolin, Ch. M. Briskina, Sov. J. Quantum Electron. 16, 281 (1986).
    [CrossRef]
  3. A. J. Campillo, J. D. Eversole, H.-B. Lin, Phys. Rev. Lett. 67, 437 (1991).
    [CrossRef] [PubMed]
  4. R. L. Armstrong, J.-G. Xie, T. E. Ruegauer, J. Gu, R. G. Pinnick, Opt. Lett. 18, 119 (1993).
    [CrossRef] [PubMed]
  5. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, E. Sauvain, Nature (London) 368, 436 (1994).
    [CrossRef]

1994 (1)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, E. Sauvain, Nature (London) 368, 436 (1994).
[CrossRef]

1993 (1)

1991 (1)

A. J. Campillo, J. D. Eversole, H.-B. Lin, Phys. Rev. Lett. 67, 437 (1991).
[CrossRef] [PubMed]

1990 (1)

K. M. Yoo, F. Liu, R. R. Alfano, Phys. Rev. Lett. 64, 2647 (1990).
[CrossRef] [PubMed]

1986 (1)

V. M. Markushev, V. F. Zolin, Ch. M. Briskina, Sov. J. Quantum Electron. 16, 281 (1986).
[CrossRef]

Alfano, R. R.

K. M. Yoo, F. Liu, R. R. Alfano, Phys. Rev. Lett. 64, 2647 (1990).
[CrossRef] [PubMed]

Armstrong, R. L.

Balachandran, R. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, E. Sauvain, Nature (London) 368, 436 (1994).
[CrossRef]

Briskina, Ch. M.

V. M. Markushev, V. F. Zolin, Ch. M. Briskina, Sov. J. Quantum Electron. 16, 281 (1986).
[CrossRef]

Campillo, A. J.

A. J. Campillo, J. D. Eversole, H.-B. Lin, Phys. Rev. Lett. 67, 437 (1991).
[CrossRef] [PubMed]

Eversole, J. D.

A. J. Campillo, J. D. Eversole, H.-B. Lin, Phys. Rev. Lett. 67, 437 (1991).
[CrossRef] [PubMed]

Gomes, A. S. L.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, E. Sauvain, Nature (London) 368, 436 (1994).
[CrossRef]

Gu, J.

Lawandy, N. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, E. Sauvain, Nature (London) 368, 436 (1994).
[CrossRef]

Lin, H.-B.

A. J. Campillo, J. D. Eversole, H.-B. Lin, Phys. Rev. Lett. 67, 437 (1991).
[CrossRef] [PubMed]

Liu, F.

K. M. Yoo, F. Liu, R. R. Alfano, Phys. Rev. Lett. 64, 2647 (1990).
[CrossRef] [PubMed]

Markushev, V. M.

V. M. Markushev, V. F. Zolin, Ch. M. Briskina, Sov. J. Quantum Electron. 16, 281 (1986).
[CrossRef]

Pinnick, R. G.

Ruegauer, T. E.

Sauvain, E.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, E. Sauvain, Nature (London) 368, 436 (1994).
[CrossRef]

Xie, J.-G.

Yoo, K. M.

K. M. Yoo, F. Liu, R. R. Alfano, Phys. Rev. Lett. 64, 2647 (1990).
[CrossRef] [PubMed]

Zolin, V. F.

V. M. Markushev, V. F. Zolin, Ch. M. Briskina, Sov. J. Quantum Electron. 16, 281 (1986).
[CrossRef]

Nature (1)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, E. Sauvain, Nature (London) 368, 436 (1994).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (2)

K. M. Yoo, F. Liu, R. R. Alfano, Phys. Rev. Lett. 64, 2647 (1990).
[CrossRef] [PubMed]

A. J. Campillo, J. D. Eversole, H.-B. Lin, Phys. Rev. Lett. 67, 437 (1991).
[CrossRef] [PubMed]

Sov. J. Quantum Electron. (1)

V. M. Markushev, V. F. Zolin, Ch. M. Briskina, Sov. J. Quantum Electron. 16, 281 (1986).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Three-dimensional emission spectra of a 2.5 × 10−2 M solution of R640 dye in methanol at different pump energies. The inset shows spectra with pump energies up to 25 mJ.

Fig. 2
Fig. 2

Three-dimensional emission spectra of a 2.5 × 10−2 M solution of R640 dye in methanol containing 5 × 1011 cm−3 TiO2 R900 nanoparticles at different pump energies. The inset shows spectra with pump energies up to 19 mJ.

Fig. 3
Fig. 3

(a) Normalized emission spectra of a 2.5 × 10−2 M R640 dye solution in methanol containing varying amounts of TiO2 R900 nanoparticles at a pump energy of 0.17 mJ: a, neat methanol; nanoparticle densities of b, 5 × 109 cm−3; c, 5 × 1010 cm−3; d, 5 × 1011 cm−3; e, 1012 cm−3; f, 2.5 × 1012 cm−3. (b) Normalized emission spectra of a 5.0 × 10−4 M R640 dye solution in methanol containing varying amounts of TiO2 R900 nanoparticles at a pump energy of 0.10 mJ: a, neat methanol; nanoparticle densities of b, 5 × 1010 cm−3; c, 5 × 1011 cm−3; d, 1012 cm−3; e, 2.5 × 1012 cm−3.

Fig. 4
Fig. 4

Temporal profiles of an R640 dye solution in methanol containing varying amounts of TiO2 R900 nanoparticles at different pump energies. 1.0 × 10−3 M dye, 0.23-mJ pump energy, and nanoparticle densities of (a) neat methanol, (b) 5 × 109 cm−3, (c) 5 × 1010 cm−3, (d) 5 × 1011 cm−3, (e) 1012 cm−3, (f) 2.5 × 1012 cm−3. 2.5 × 10−2 M dye, 5 × 109 cm−3 TiO2 nanoparticles, and pump energies of (g) 0.23 mJ, (h) 0.46 mJ, (i) 0.70 mJ. The time scale for (b) is 500 ps/division; all the others are 200 ps/division.

Tables (2)

Tables Icon

Table 1 Summary of the Thresholds for 2.5 × 10−2 M R640 Dye in Methanol at Wavelengths of 620 and 650 nm with and without TiO2 R900 Nanoparticles

Tables Icon

Table 2 Summary of the Thresholds for 5 × 10−4 and 1.0 × 10−3 M Concentrations of R640 Dye in Methanol at 620 nm with and without TiO2 R900 Nanoparticles

Metrics